These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) at elevated temperatures. Verma D; Tomar V Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():243-250. PubMed ID: 25686945 [TBL] [Abstract][Full Text] [Related]
48. Integrative taxonomy revisits the ontogeny and trophic niches of Methou P; Michel LN; Segonzac M; Cambon-Bonavita MA; Pradillon F R Soc Open Sci; 2020 Jul; 7(7):200837. PubMed ID: 32874664 [TBL] [Abstract][Full Text] [Related]
49. Heat-shock response and temperature resistance in the deep-sea vent shrimp Rimicaris exoculata. Ravaux J; Gaill F; Le Bris N; Sarradin PM; Jollivet D; Shillito B J Exp Biol; 2003 Jul; 206(Pt 14):2345-54. PubMed ID: 12796451 [TBL] [Abstract][Full Text] [Related]
50. Deep-sea mussels from a hybrid zone on the Mid-Atlantic Ridge host genetically indistinguishable symbionts. Ücker M; Ansorge R; Sato Y; Sayavedra L; Breusing C; Dubilier N ISME J; 2021 Oct; 15(10):3076-3083. PubMed ID: 33972724 [TBL] [Abstract][Full Text] [Related]
51. Evidence for horizontal transmission from multilocus phylogeny of deep-sea mussel (Mytilidae) symbionts. Fontanez KM; Cavanaugh CM Environ Microbiol; 2014 Dec; 16(12):3608-21. PubMed ID: 24428587 [TBL] [Abstract][Full Text] [Related]
52. Lipid Adaptation of Shrimp Rimicaris exoculata in Hydrothermal Vent. Zhu S; Ye M; Yan X; Zhou Y; Wang C; Xu J Lipids; 2015 Dec; 50(12):1233-42. PubMed ID: 26475295 [TBL] [Abstract][Full Text] [Related]
53. Two C-type lectins (ReCTL-1, ReCTL-2) from Rimicaris exoculata display broad nonself recognition spectrum with novel carbohydrate binding specificity. Wang G; Lei Y; Kang T; Li Z; Fei H; Zeng B; Zhou P; Wang C; Lv Z; Huang M; Xu X Fish Shellfish Immunol; 2020 Jan; 96():152-160. PubMed ID: 31794843 [TBL] [Abstract][Full Text] [Related]
54. Biotic and abiotic controls on iron oxyhydroxide formation in the gill chamber of the hydrothermal vent shrimp Rimicaris exoculata. Schmidt C; Corbari L; Gaill F; Le Bris N Geobiology; 2009 Sep; 7(4):454-64. PubMed ID: 19656216 [TBL] [Abstract][Full Text] [Related]
56. Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Zimmermann J; Lott C; Weber M; Ramette A; Bright M; Dubilier N; Petersen JM Environ Microbiol; 2014 Dec; 16(12):3638-56. PubMed ID: 24552661 [TBL] [Abstract][Full Text] [Related]
57. Distribution of micro-essential (Fe, Cu, Zn) and toxic (Hg) metals in tissues of two nutritionally distinct hydrothermal shrimps. Kádár E; Costa V; Santos RS Sci Total Environ; 2006 Apr; 358(1-3):143-50. PubMed ID: 16209883 [TBL] [Abstract][Full Text] [Related]
58. Assessing a species thermal tolerance through a multiparameter approach: the case study of the deep-sea hydrothermal vent shrimp Rimicaris exoculata. Ravaux J; Léger N; Hamel G; Shillito B Cell Stress Chaperones; 2019 May; 24(3):647-659. PubMed ID: 31073901 [TBL] [Abstract][Full Text] [Related]
59. Host-Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam. Ip JC; Xu T; Sun J; Li R; Chen C; Lan Y; Han Z; Zhang H; Wei J; Wang H; Tao J; Cai Z; Qian PY; Qiu JW Mol Biol Evol; 2021 Jan; 38(2):502-518. PubMed ID: 32956455 [TBL] [Abstract][Full Text] [Related]
60. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. Ponnudurai R; Kleiner M; Sayavedra L; Petersen JM; Moche M; Otto A; Becher D; Takeuchi T; Satoh N; Dubilier N; Schweder T; Markert S ISME J; 2017 Feb; 11(2):463-477. PubMed ID: 27801908 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]