These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A new generation of Bt maize for control of fall armyworm (Spodoptera frugiperda). Horikoshi RJ; Vertuan H; de Castro AA; Morrell K; Griffith C; Evans A; Tan J; Asiimwe P; Anderson H; José MOMA; Dourado PM; Berger G; Martinelli S; Head G Pest Manag Sci; 2021 Aug; 77(8):3727-3736. PubMed ID: 33624355 [TBL] [Abstract][Full Text] [Related]
43. Molecular mechanisms of cytochrome P450-mediated detoxification of tetraniliprole, spinetoram, and emamectin benzoate in the fall armyworm, Wang A; Zhang Y; Liu S; Xue C; Zhao Y; Zhao M; Yang Y; Zhang J Bull Entomol Res; 2024 Apr; 114(2):159-171. PubMed ID: 38563228 [TBL] [Abstract][Full Text] [Related]
44. Cross-resistance and Inheritance of Resistance to Emamectin Benzoate in Spodoptera exigua (Lepidoptera: Noctuidae). Che W; Huang J; Guan F; Wu Y; Yang Y J Econ Entomol; 2015 Aug; 108(4):2015-20. PubMed ID: 26470348 [TBL] [Abstract][Full Text] [Related]
45. Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Hannig GT; Ziegler M; Marçon PG Pest Manag Sci; 2009 Sep; 65(9):969-74. PubMed ID: 19449341 [TBL] [Abstract][Full Text] [Related]
46. Susceptibility Evaluation of Fall Armyworm ( Gichere SN; Khakame KS; Patrick O J Toxicol; 2022; 2022():8007998. PubMed ID: 35978563 [TBL] [Abstract][Full Text] [Related]
47. Topical and dietary toxicity of emamectin benzoate, chlorantraniliprole, cyantraniliprole and indoxacarb to larvae of the common armyworm Mythimna convecta (Lepidoptera: Noctuidae). Stevens MM; Warren GN; Mo J Pest Manag Sci; 2022 Mar; 78(3):1000-1007. PubMed ID: 34761507 [TBL] [Abstract][Full Text] [Related]
48. Influence of three insecticides targeting GABA receptor on fall armyworm Spodoptera frugiperda: Analyses from individual, biochemical and molecular levels. Zhan EL; Wang Y; Jiang J; Jia ZQ; Tang T; Song ZJ; Han ZJ; Zhao CQ Pestic Biochem Physiol; 2021 Nov; 179():104973. PubMed ID: 34802523 [TBL] [Abstract][Full Text] [Related]
49. Association of growth-regulating insecticides and limonoid-based formulations: physicochemical compatibility and toxicity against Spodoptera frugiperda (Lepidoptera: Noctuidae). Martins LN; Geisler FCDS; Amandio DTT; Rakes M; Pasini RA; Ribeiro LDP; Bernardi D J Econ Entomol; 2023 Jun; 116(3):927-934. PubMed ID: 37058438 [TBL] [Abstract][Full Text] [Related]
50. Seed treatment for managing fall armyworm as a defoliator and cutworm on maize: plant protection, residuality, and the insect life history. Oliveira C; Orozco-Restrepo SM; Alves AC; Pinto BS; Miranda MS; Barbosa MH; Picanço MC; Pereira EJ Pest Manag Sci; 2022 Mar; 78(3):1240-1250. PubMed ID: 34850531 [TBL] [Abstract][Full Text] [Related]
51. Chlorantraniliprole Enhances Cellular Immunity in Larvae of Liu Q; Deng X; Wang L; Xie W; Zhang H; Li Q; Yang Q; Jiang C Insects; 2024 Aug; 15(8):. PubMed ID: 39194791 [TBL] [Abstract][Full Text] [Related]
52. Laboratory efficacy of selected synthetic insecticides against second instar invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Idrees A; Qadir ZA; Afzal A; Ranran Q; Li J PLoS One; 2022; 17(5):e0265265. PubMed ID: 35576188 [TBL] [Abstract][Full Text] [Related]
53. Large-Scale Monitoring of the Frequency of Ryanodine Receptor Target-Site Mutations Conferring Diamide Resistance in Brazilian Field Populations of Fall Armyworm, Okuma DM; Cuenca A; Nauen R; Omoto C Insects; 2022 Jul; 13(7):. PubMed ID: 35886802 [TBL] [Abstract][Full Text] [Related]
54. Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from El-Sayed GM; Emam MTH; Hammad MA; Mahmoud SH Molecules; 2024 Mar; 29(7):. PubMed ID: 38611746 [No Abstract] [Full Text] [Related]
55. Control efficacy of azadirachtin on the fall armyworm, Spodoptera frugiperda (J. E. Smith) by soil drenching. Acharya R; Sharma SR; Barman AK; Kim SM; Lee KY Arch Insect Biochem Physiol; 2023 Jul; 113(3):e22020. PubMed ID: 37106481 [TBL] [Abstract][Full Text] [Related]
56. Reliability of Pheromone Trap Catches and Maize Plant Damage as Criteria for Timing Fall Armyworm Control Interventions in Humid Forest Agroecology of Central Africa. Abang AF; Nanga SN; Esi Ndanda RMO; Doumtsop Fotio AR; Gonder MK; Kouebou C; Suh C; Fotso Kuate A; Fiaboe KKKM; Hanna R J Econ Entomol; 2022 Dec; 115(6):1806-1816. PubMed ID: 36515108 [TBL] [Abstract][Full Text] [Related]
57. MicroRNA-190-5p confers chlorantraniliprole resistance by regulating CYP6K2 in Spodoptera frugiperda (Smith). Zhang MY; Zhang P; Su X; Guo TX; Zhou JL; Zhang BZ; Wang HL Pestic Biochem Physiol; 2022 Jun; 184():105133. PubMed ID: 35715027 [TBL] [Abstract][Full Text] [Related]
58. Monitoring the Resistance of the Beet Armyworm (Lepidoptera: Noctuidae) to Four Insecticides in Southern China from 2014 to 2018. Wang P; Yang F; Wang Y; Zhou LL; Luo HB; Zhang S; Si SY J Econ Entomol; 2021 Feb; 114(1):332-338. PubMed ID: 33399189 [TBL] [Abstract][Full Text] [Related]
60. Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides. Huang JM; Zhao YX; Sun H; Ni H; Liu C; Wang X; Gao CF; Wu SF Pestic Biochem Physiol; 2021 May; 174():104831. PubMed ID: 33838702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]