These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36334196)

  • 1. Characteristic pollutants risk assessment of modified manganese residue utilization in sintered product.
    Wang CQ; Liu K; Huang DM; Huang QC; Wang PX; Mei XD; Li SC
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88369-88382. PubMed ID: 36334196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH
    Wang Y; Gao S; Liu X; Tang B; Mukiza E; Zhang N
    J Hazard Mater; 2019 Oct; 378():120768. PubMed ID: 31220649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release characteristics of heavy metals from electrolytic manganese residue under varying environmental factors.
    Fosua BA; Xie H; Xiao X; Anaman R; Wang X; Guo Z; Peng C
    Environ Monit Assess; 2023 Mar; 195(4):498. PubMed ID: 36947342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrolytic manganese residue disposal based on basic burning raw material: Heavy metals solidification/stabilization and long-term stability.
    He D; Luo Z; Zeng X; Chen Q; Zhao Z; Cao W; Shu J; Chen M
    Sci Total Environ; 2022 Jun; 825():153774. PubMed ID: 35192822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-stabilization/solidification of heavy metals in municipal solid waste incineration fly ash and electrolytic manganese residue based on self-bonding characteristics.
    Zhan X; Wang L; Gong J; Deng R; Wu M
    Chemosphere; 2022 Nov; 307(Pt 2):135793. PubMed ID: 35872056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leachate analysis of green and fired-clay bricks incorporated with biosolids.
    Ukwatta A; Mohajerani A
    Waste Manag; 2017 Aug; 66():134-144. PubMed ID: 28461141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An innovative method for manganese (Mn
    Shu J; Li B; Chen M; Sun D; Wei L; Wang Y; Wang J
    Chemosphere; 2020 Aug; 253():126896. PubMed ID: 32402467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low cost of phosphate-based binder for Mn
    Shu J; Cai L; Zhao J; Feng H; Chen M; Zhang X; Wu H; Yang Y; Liu R
    Ecotoxicol Environ Saf; 2020 Dec; 205():111317. PubMed ID: 32950807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag.
    He D; Shu J; Zeng X; Wei Y; Chen M; Tan D; Liang Q
    Sci Total Environ; 2022 Mar; 810():152175. PubMed ID: 34896487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic solidification and mechanism research of electrolytic manganese residue and coal fly ash based on C-A-S-H gel material.
    Liu B; Yue B; He LL; Meng BB; Wang YX; Wang T; Gao H
    J Environ Manage; 2024 Aug; 365():121600. PubMed ID: 38963957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient Mn
    Li X; Li X; Yang J; Cao Z; Li C; Xue J; Ma X; Wang S
    J Hazard Mater; 2024 Jul; 472():134430. PubMed ID: 38718502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolytic manganese residue-based cement for manganese ore pit backfilling: Performance and mechanism.
    Lan J; Sun Y; Tian H; Zhan W; Du Y; Ye H; Du D; Zhang TC; Hou H
    J Hazard Mater; 2021 Jun; 411():124941. PubMed ID: 33858079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for the stabilization of soluble contaminants in electrolytic manganese residue: Using low-cost phosphogypsum leachate and magnesia/calcium oxide.
    Chen H; Long Q; Zhang Y; Wang S; Deng F
    Ecotoxicol Environ Saf; 2020 May; 194():110384. PubMed ID: 32126412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in comprehensive utilization of electrolytic manganese residue: a review.
    Li W; Jin H; Xie H; Wang D
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):48837-48853. PubMed ID: 36884169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leachate Analysis of Heavy Metals in Cigarette Butts and Bricks Incorporated with Cigarette Butts.
    Kurmus H; Mohajerani A
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32630391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical review on approaches for electrolytic manganese residue treatment and disposal technology: Reduction, pretreatment, and reuse.
    He D; Shu J; Wang R; Chen M; Wang R; Gao Y; Liu R; Liu Z; Xu Z; Tan D; Gu H; Wang N
    J Hazard Mater; 2021 Sep; 418():126235. PubMed ID: 34126381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced geopolymeric co-disposal efficiency of heavy metals from MSWI fly ash and electrolytic manganese residue using complex alkaline and calcining pre-treatment.
    Zhan X; Wang L; Wang L; Wang X; Gong J; Yang L; Bai J
    Waste Manag; 2019 Oct; 98():135-143. PubMed ID: 31446253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-sintering MSWI fly ash with electrolytic manganese residue and coal fly ash for lightweight ceramisite.
    Zhan X; Wang L; Wang L; Gong J; Wang X; Song X; Xu T
    Chemosphere; 2021 Jan; 263():127914. PubMed ID: 32822940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of Spent FCC Catalyst as Fine Aggregate in Non-sintered Brick: Alkali Activation and Environmental Risk Assessment.
    Zhang D; Fang S; Zhang H; Liu Z; Zhang Z; Zhang S
    Front Chem; 2021; 9():674271. PubMed ID: 33981676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal and metalloid emissions during co-processing of waste in a sintering kiln: Migration characteristics in the kiln and long-term leaching from bricks.
    Yang L; Wang L; Cui C; Long H; Huang X; Liu M; Li L; Xu S; Wang M; Yan D
    J Environ Manage; 2022 Nov; 322():116145. PubMed ID: 36070648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.