These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
587 related articles for article (PubMed ID: 36334300)
1. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation. Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300 [TBL] [Abstract][Full Text] [Related]
2. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release. Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323 [TBL] [Abstract][Full Text] [Related]
3. 3D-printed PCL/β-TCP/CS composite artificial bone and histocompatibility study. Zheng C; Zhang M J Orthop Surg Res; 2023 Dec; 18(1):981. PubMed ID: 38129861 [TBL] [Abstract][Full Text] [Related]
4. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935 [TBL] [Abstract][Full Text] [Related]
5. 3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect. Peng Z; Wang C; Liu C; Xu H; Wang Y; Liu Y; Hu Y; Li J; Jin Y; Jiang C; Liu L; Guo J; Zhu L J Mater Chem B; 2021 Jul; 9(28):5698-5710. PubMed ID: 34223587 [TBL] [Abstract][Full Text] [Related]
6. 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration. Javkhlan Z; Hsu SH; Chen RS; Chen MH J Formos Med Assoc; 2024 Jan; 123(1):71-77. PubMed ID: 37709573 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction. Lee S; Choi D; Shim JH; Nam W Sci Rep; 2020 Mar; 10(1):4979. PubMed ID: 32188900 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of rhBMP-2 Loaded PCL/ Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530 [TBL] [Abstract][Full Text] [Related]
9. In Vitro and In Vivo Study of a Novel Nanoscale Demineralized Bone Matrix Coated PCL/β-TCP Scaffold for Bone Regeneration. Yuan B; Wang Z; Zhao Y; Tang Y; Zhou S; Sun Y; Chen X Macromol Biosci; 2021 Mar; 21(3):e2000336. PubMed ID: 33346401 [TBL] [Abstract][Full Text] [Related]
10. 3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects. Pae HC; Kang JH; Cha JK; Lee JS; Paik JW; Jung UW; Kim BH; Choi SH J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1254-1263. PubMed ID: 30300967 [TBL] [Abstract][Full Text] [Related]
11. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Nyberg E; Rindone A; Dorafshar A; Grayson WL Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692 [TBL] [Abstract][Full Text] [Related]
12. The incorporation of β-tricalcium phosphate nanoparticles within silk fibroin composite scaffolds for enhanced bone regeneration: An in vitro and in vivo study. Jing T; Yi Liu ; Xu L; Chen C; Liu F J Biomater Appl; 2022 Apr; 36(9):1567-1578. PubMed ID: 35135370 [TBL] [Abstract][Full Text] [Related]
13. 3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite - Physical properties and biocompatibility. Wang Y; Liu C; Song T; Cao Z; Wang T Heliyon; 2024 Mar; 10(5):e26071. PubMed ID: 38468962 [TBL] [Abstract][Full Text] [Related]
15. Bone Fracture-Treatment Method: Fixing 3D-Printed Polycaprolactone Scaffolds with Hydrogel Type Bone-Derived Extracellular Matrix and β-Tricalcium Phosphate as an Osteogenic Promoter. Yun S; Choi D; Choi DJ; Jin S; Yun WS; Huh JB; Shim JH Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445788 [TBL] [Abstract][Full Text] [Related]
16. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472 [TBL] [Abstract][Full Text] [Related]
18. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. Tarafder S; Bose S ACS Appl Mater Interfaces; 2014 Jul; 6(13):9955-65. PubMed ID: 24826838 [TBL] [Abstract][Full Text] [Related]
19. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds. Harb SV; Kolanthai E; Backes EH; Beatrice CAG; Pinto LA; Nunes ACC; Selistre-de-Araújo HS; Costa LC; Seal S; Pessan LA Tissue Eng Regen Med; 2024 Feb; 21(2):223-242. PubMed ID: 37856070 [TBL] [Abstract][Full Text] [Related]
20. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]