BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36334321)

  • 1. How getting twisted in scaffold design can promote bone regeneration: A fluid-structure interaction evaluation.
    Wang L; Wang J; Chen Q; Li Q; Mendieta JB; Li Z
    J Biomech; 2022 Dec; 145():111359. PubMed ID: 36334321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wall Shear Stress Analysis and Optimization in Tissue Engineering TPMS Scaffolds.
    Pires THV; Dunlop JWC; Castro APG; Fernandes PR
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.
    Zhao F; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2016 Jun; 15(3):561-77. PubMed ID: 26224148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
    El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR
    Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization.
    Zhao F; Lacroix D; Ito K; van Rietbergen B; Hofmann S
    Bone Rep; 2020 Jun; 12():100265. PubMed ID: 32613033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold Pore Geometry Guides Gene Regulation and Bone-like Tissue Formation in Dynamic Cultures.
    Rubert M; Vetsch JR; Lehtoviita I; Sommer M; Zhao F; Studart AR; Müller R; Hofmann S
    Tissue Eng Part A; 2021 Sep; 27(17-18):1192-1204. PubMed ID: 33297842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of polycaprolactone scaffold permeability on bone regeneration in vivo.
    Mitsak AG; Kemppainen JM; Harris MT; Hollister SJ
    Tissue Eng Part A; 2011 Jul; 17(13-14):1831-9. PubMed ID: 21395465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine.
    Zhao Q; Li G; Wang T; Jin Y; Lu W; Ji J
    Stem Cells Dev; 2021 May; 30(10):548-559. PubMed ID: 33736461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering.
    Entezari A; Swain MV; Gooding JJ; Roohani I; Li Q
    Acta Biomater; 2020 Dec; 118():100-112. PubMed ID: 33059100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application.
    Shibli JA; Nagay BE; Suárez LJ; Urdániga Hung C; Bertolini M; Barão VAR; Souza JGS
    Tissue Eng Part C Methods; 2022 May; 28(5):179-192. PubMed ID: 35166162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration.
    Amini AR; Adams DJ; Laurencin CT; Nukavarapu SP
    Tissue Eng Part A; 2012 Jul; 18(13-14):1376-88. PubMed ID: 22401817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in silico model predicts the impact of scaffold design in large bone defect regeneration.
    Perier-Metz C; Cipitria A; Hutmacher DW; Duda GN; Checa S
    Acta Biomater; 2022 Jun; 145():329-341. PubMed ID: 35417799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges in computational fluid dynamics applications for bone tissue engineering.
    Pires T; Dunlop JWC; Fernandes PR; Castro APG
    Proc Math Phys Eng Sci; 2022 Jan; 478(2257):20210607. PubMed ID: 35153613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of Heel-strike like Mechanical Loading with Deproteinized Cancellous Bone Scaffold Implantation to Repair Segmental Bone Defects in Rabbits.
    Huang G; Liu G; Zhang F; Gao J; Wang J; Chen Q; Wu B; Ding Z; Cai T
    Int J Med Sci; 2017; 14(9):871-879. PubMed ID: 28824324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration.
    Lee J; Huh SJ; Seok JM; Lee S; Byun H; Jang GN; Kim E; Kim SJ; Park SA; Kim SM; Shin H
    Acta Biomater; 2022 Mar; 140():730-744. PubMed ID: 34896633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P34HB electrospun fibres promote bone regeneration in vivo.
    Fu N; Meng Z; Jiao T; Luo X; Tang Z; Zhu B; Sui L; Cai X
    Cell Prolif; 2019 May; 52(3):e12601. PubMed ID: 30896076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.