These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 36334355)
1. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy. Li Q; Chao Y; Liu B; Xiao Z; Yang Z; Wu Y; Liu Z Biomaterials; 2022 Dec; 291():121880. PubMed ID: 36334355 [TBL] [Abstract][Full Text] [Related]
2. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Ren L; Feng W; Shao J; Ma J; Xu M; Zhu BZ; Zheng N; Liu S Theranostics; 2020; 10(14):6384-6398. PubMed ID: 32483459 [TBL] [Abstract][Full Text] [Related]
3. Dual Action of Acidic Microenvironment on the Enrichment of the Active Metabolite of Disulfiram in Tumor Tissues. Tang C; Pang X; Guo Z; Guo R; Liu L; Chen X Drug Metab Dispos; 2021 Jun; 49(6):434-441. PubMed ID: 33762296 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Tumor-Specific Disulfiram Chemotherapy by Wu W; Yu L; Jiang Q; Huo M; Lin H; Wang L; Chen Y; Shi J J Am Chem Soc; 2019 Jul; 141(29):11531-11539. PubMed ID: 31251050 [TBL] [Abstract][Full Text] [Related]
5. Glutathione-responsive copper-disulfiram nanoparticles for enhanced tumor chemotherapy. Chen M; Huang Z; Xia M; Ding Y; Shan T; Guan Z; Dai X; Xu X; Huang Y; Huang M; Zhao C J Control Release; 2022 Jan; 341():351-363. PubMed ID: 34856225 [TBL] [Abstract][Full Text] [Related]
6. Nanomedicine Enables Drug-Potency Activation with Tumor Sensitivity and Hyperthermia Synergy in the Second Near-Infrared Biowindow. Liu W; Xiang H; Tan M; Chen Q; Jiang Q; Yang L; Cao Y; Wang Z; Ran H; Chen Y ACS Nano; 2021 Apr; 15(4):6457-6470. PubMed ID: 33750100 [TBL] [Abstract][Full Text] [Related]
7. Disulfiram-loaded metal organic framework for precision cancer treatment via ultrasensitive tumor microenvironment-responsive copper chelation and radical generation. Zhang H; Zhang Q; Guo Z; Liang K; Boyer C; Liu J; Zheng Z; Amal R; Yun SLJ; Gu Z J Colloid Interface Sci; 2022 Jun; 615():517-526. PubMed ID: 35152072 [TBL] [Abstract][Full Text] [Related]
8. Co-delivery of nanoparticle and molecular drug by hollow mesoporous organosilica for tumor-activated and photothermal-augmented chemotherapy of breast cancer. Zhang H; Song F; Dong C; Yu L; Chang C; Chen Y J Nanobiotechnology; 2021 Sep; 19(1):290. PubMed ID: 34579711 [TBL] [Abstract][Full Text] [Related]
9. Orchestrating Precision within the Tumor Microenvironment by Biomimetic Nanoprodrugs for Effective Tumor Therapy. Wang Y; Xu H; Huang X; Zhang Y; Lu Y; Cheng J; Xu X; Li J; Yao H; Chen X ACS Appl Mater Interfaces; 2024 Feb; 16(7):8484-8498. PubMed ID: 38334265 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale Copper(II)-Diethyldithiocarbamate Coordination Polymer as a Drug Self-Delivery System for Highly Robust and Specific Cancer Therapy. Peng Y; Liu P; Meng Y; Hu S; Ding J; Zhou W Mol Pharm; 2020 Aug; 17(8):2864-2873. PubMed ID: 32551674 [TBL] [Abstract][Full Text] [Related]
11. Engineering Dual-Responsive Prodrug-MOFs as Immunogenic Cell Death Initiator for Enhancing Cancer Immunotherapy. Hu X; Li R; Liu J; Fang K; Dong C; Shi S Adv Healthc Mater; 2024 Mar; 13(7):e2302333. PubMed ID: 38253350 [TBL] [Abstract][Full Text] [Related]
12. Buffet-style Cu(II) for enhance disulfiram-based cancer therapy. Zhao L; Wang X; Lou H; Jiang M; Wu X; Qin J; Zhang J; Guan X; Li W; Zhang W; Ma J J Colloid Interface Sci; 2022 Oct; 624():734-746. PubMed ID: 35696791 [TBL] [Abstract][Full Text] [Related]
13. Process of immunogenic cell death caused by disulfiram as the anti-colorectal cancer candidate. You SY; Rui W; Chen ST; Chen HC; Liu XW; Huang J; Chen HY Biochem Biophys Res Commun; 2019 Jun; 513(4):891-897. PubMed ID: 31003768 [TBL] [Abstract][Full Text] [Related]
14. Turning anecdotal irradiation-induced anticancer immune responses into reproducible in situ cancer vaccines via disulfiram/copper-mediated enhanced immunogenic cell death of breast cancer cells. Guo W; Jia L; Xie L; Kiang JG; Wang Y; Sun F; Lin Z; Wang E; Zhang Y; Huang P; Sun T; Zhang X; Bian Z; Tang T; Guo J; Ferrone S; Wang X Cell Death Dis; 2024 Apr; 15(4):298. PubMed ID: 38678042 [TBL] [Abstract][Full Text] [Related]
15. Cannabidiol-induced activation of the metallothionein pathway impedes anticancer effects of disulfiram and its metabolite CuET. Buchtova T; Skrott Z; Chroma K; Rehulka J; Dzubak P; Hajduch M; Lukac D; Arampatzis S; Bartek J; Mistrik M Mol Oncol; 2022 Apr; 16(7):1541-1554. PubMed ID: 34632694 [TBL] [Abstract][Full Text] [Related]
16. A tumor microenvironment-responsive core-shell tecto dendrimer nanoplatform for magnetic resonance imaging-guided and cuproptosis-promoted chemo-chemodynamic therapy. Ni C; Ouyang Z; Li G; Liu J; Cao X; Zheng L; Shi X; Guo R Acta Biomater; 2023 Jul; 164():474-486. PubMed ID: 37040813 [TBL] [Abstract][Full Text] [Related]
17. Recent Advances in Repurposing Disulfiram and Disulfiram Derivatives as Copper-Dependent Anticancer Agents. Kannappan V; Ali M; Small B; Rajendran G; Elzhenni S; Taj H; Wang W; Dou QP Front Mol Biosci; 2021; 8():741316. PubMed ID: 34604310 [TBL] [Abstract][Full Text] [Related]
18. In situ generation of copper(Ⅱ)/diethyldithiocarbamate complex through tannic acid/copper(Ⅱ) network coated hollow mesoporous silica for enhanced cancer chemodynamic therapy. Zhu Y; Wang N; Ling J; Yang L; Omer AM; Ouyang XK; Yang G J Colloid Interface Sci; 2024 Apr; 660():637-646. PubMed ID: 38266345 [TBL] [Abstract][Full Text] [Related]
19. Disulfiram-loaded CuO Hu W; Yang L; Liao H; Sun D; Ouyang XK; Wang N; Yang G J Colloid Interface Sci; 2024 Nov; 674():9-18. PubMed ID: 38908062 [TBL] [Abstract][Full Text] [Related]
20. Copper-Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification. Wu W; Yu L; Pu Y; Yao H; Chen Y; Shi J Adv Mater; 2020 Apr; 32(17):e2000542. PubMed ID: 32162734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]