These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 36334394)
1. TIME-Net: Transformer-Integrated Multi-Encoder Network for limited-angle artifact removal in dual-energy CBCT. Zhang Y; Hu D; Yan Z; Zhao Q; Quan G; Luo S; Zhang Y; Chen Y Med Image Anal; 2023 Jan; 83():102650. PubMed ID: 36334394 [TBL] [Abstract][Full Text] [Related]
2. Performance characterization of a prototype dual-layer cone-beam computed tomography system. Ståhl F; Schäfer D; Omar A; van de Haar P; van Nijnatten F; Withagen P; Thran A; Hummel E; Menser B; Holmberg Å; Söderman M; Falk Delgado A; Poludniowski G Med Phys; 2021 Nov; 48(11):6740-6754. PubMed ID: 34622973 [TBL] [Abstract][Full Text] [Related]
3. Dual-energy material decomposition for cone-beam computed tomography in image-guided radiotherapy. Skaarup M; Edmund JM; Dorn S; Kachelriess M; Vogelius IR Acta Oncol; 2019 Oct; 58(10):1483-1488. PubMed ID: 31271086 [No Abstract] [Full Text] [Related]
4. Prior image-guided cone-beam computed tomography augmentation from under-sampled projections using a convolutional neural network. Jiang Z; Zhang Z; Chang Y; Ge Y; Yin FF; Ren L Quant Imaging Med Surg; 2021 Dec; 11(12):4767-4780. PubMed ID: 34888188 [TBL] [Abstract][Full Text] [Related]
5. Deep-learning-based direct inversion for material decomposition. Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942 [TBL] [Abstract][Full Text] [Related]
6. Fast and effective single-scan dual-energy cone-beam CT reconstruction and decomposition denoising based on dual-energy vectorization. Jiang X; Fang C; Hu P; Cui H; Zhu L; Yang Y Med Phys; 2021 Sep; 48(9):4843-4856. PubMed ID: 34289129 [TBL] [Abstract][Full Text] [Related]
7. SEA-Net: Structure-Enhanced Attention Network for Limited-Angle CBCT Reconstruction of Clinical Projection Data. Hu D; Zhang Y; Li W; Zhang W; Reddy K; Ding Q; Zhang X; Chen Y; Gao H IEEE Trans Instrum Meas; 2023; 72():. PubMed ID: 38957474 [TBL] [Abstract][Full Text] [Related]
8. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography. Men K; Dai J; Chen X; Li M; Zhang K; Huang P Phys Med; 2017 Apr; 36():110-118. PubMed ID: 28410679 [TBL] [Abstract][Full Text] [Related]
9. Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT. Gang GJ; Zbijewski W; Webster Stayman J; Siewerdsen JH Med Phys; 2012 Aug; 39(8):5145-56. PubMed ID: 22894440 [TBL] [Abstract][Full Text] [Related]
10. Feasibility study of three-material decomposition in dual-energy cone-beam CT imaging with deep learning. Zhu J; Su T; Zhang X; Yang J; Mi D; Zhang Y; Gao X; Zheng H; Liang D; Ge Y Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35728784 [No Abstract] [Full Text] [Related]
11. Efficient high cone-angle artifact reduction in circular cone-beam CT using deep learning with geometry-aware dimension reduction. Minnema J; van Eijnatten M; der Sarkissian H; Doyle S; Koivisto J; Wolff J; Forouzanfar T; Lucka F; Batenburg KJ Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 34107467 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of 4-D Cone-Beam Computed Tomography (4D-CBCT) Using a Dual-Encoder Convolutional Neural Network (DeCNN). Jiang Z; Zhang Z; Chang Y; Ge Y; Yin FF; Ren L IEEE Trans Radiat Plasma Med Sci; 2022 Feb; 6(2):222-230. PubMed ID: 35386935 [TBL] [Abstract][Full Text] [Related]
13. Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network. Yuan N; Rao S; Chen Q; Sensoy L; Qi J; Rong Y Med Phys; 2022 May; 49(5):3263-3277. PubMed ID: 35229904 [TBL] [Abstract][Full Text] [Related]
14. Noise Reduction in Material Decomposition for Low-Dose Dual-Energy Cone-Beam CT. Zbijewski W; Gang G; Wang AS; Stayman JW; Taguchi K; Carrino JA; Siewerdsen JH Proc SPIE Int Soc Opt Eng; 2013 Feb; 8668():. PubMed ID: 34188351 [TBL] [Abstract][Full Text] [Related]
15. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction. Madesta F; Sentker T; Gauer T; Werner R Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329 [TBL] [Abstract][Full Text] [Related]
16. Comparative Study of Dual Energy Cone-Beam CT using a Dual-Layer Detector and kVp Switching for Material Decomposition. Shi L; Bennett NR; Shapiro E; Colbeth RE; Star-Lack J; Lu M; Wang AS Proc SPIE Int Soc Opt Eng; 2020 Feb; 11312():. PubMed ID: 34248249 [TBL] [Abstract][Full Text] [Related]
17. Spatial adaptive and transformer fusion network (STFNet) for low-count PET blind denoising with MRI. Zhang L; Xiao Z; Zhou C; Yuan J; He Q; Yang Y; Liu X; Liang D; Zheng H; Fan W; Zhang X; Hu Z Med Phys; 2022 Jan; 49(1):343-356. PubMed ID: 34796526 [TBL] [Abstract][Full Text] [Related]
18. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT). Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275 [TBL] [Abstract][Full Text] [Related]
19. A Monte Carlo study to investigate the feasibility of an on-board SPECT/spectral-CT/CBCT imager for medical linear accelerator. Wang H; Nie K; Chang J; Kuang Y Med Phys; 2020 Oct; 47(10):5112-5122. PubMed ID: 32681649 [TBL] [Abstract][Full Text] [Related]
20. A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies. Liu Y; Chen X; Zhu J; Yang B; Wei R; Xiong R; Quan H; Liu Y; Dai J; Men K Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35354124 [No Abstract] [Full Text] [Related] [Next] [New Search]