BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36334587)

  • 1. Contrasting modes of macro and microsynteny evolution in a eukaryotic subphylum.
    Li Y; Liu H; Steenwyk JL; LaBella AL; Harrison MC; Groenewald M; Zhou X; Shen XX; Zhao T; Hittinger CT; Rokas A
    Curr Biol; 2022 Dec; 32(24):5335-5343.e4. PubMed ID: 36334587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum.
    Shen XX; Opulente DA; Kominek J; Zhou X; Steenwyk JL; Buh KV; Haase MAB; Wisecaver JH; Wang M; Doering DT; Boudouris JT; Schneider RM; Langdon QK; Ohkuma M; Endoh R; Takashima M; Manabe RI; Čadež N; Libkind D; Rosa CA; DeVirgilio J; Hulfachor AB; Groenewald M; Kurtzman CP; Hittinger CT; Rokas A
    Cell; 2018 Nov; 175(6):1533-1545.e20. PubMed ID: 30415838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes.
    Zhao T; Schranz ME
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2165-2174. PubMed ID: 30674676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals.
    Danchin EG; Gouret P; Pontarotti P
    BMC Evol Biol; 2006 Jan; 6():5. PubMed ID: 16420703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mode and tempo of genome size evolution in eukaryotes.
    Oliver MJ; Petrov D; Ackerly D; Falkowski P; Schofield OM
    Genome Res; 2007 May; 17(5):594-601. PubMed ID: 17420184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina).
    Dujon BA; Louis EJ
    Genetics; 2017 Jun; 206(2):717-750. PubMed ID: 28592505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cell morphological diversity of Saccharomycotina yeasts.
    Chavez CM; Groenewald M; Hulfachor AB; Kpurubu G; Huerta R; Hittinger CT; Rokas A
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38142225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades.
    Guyot R; Lefebvre-Pautigny F; Tranchant-Dubreuil C; Rigoreau M; Hamon P; Leroy T; Hamon S; Poncet V; Crouzillat D; de Kochko A
    BMC Genomics; 2012 Mar; 13():103. PubMed ID: 22433423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets.
    Hogan GJ; Brown PO; Herschlag D
    PLoS Biol; 2015; 13(11):e1002307. PubMed ID: 26587879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts.
    Morel G; Sterck L; Swennen D; Marcet-Houben M; Onesime D; Levasseur A; Jacques N; Mallet S; Couloux A; Labadie K; Amselem J; Beckerich JM; Henrissat B; Van de Peer Y; Wincker P; Souciet JL; Gabaldón T; Tinsley CR; Casaregola S
    Sci Rep; 2015 Jun; 5():11571. PubMed ID: 26108467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota.
    Shen XX; Steenwyk JL; LaBella AL; Opulente DA; Zhou X; Kominek J; Li Y; Groenewald M; Hittinger CT; Rokas A
    Sci Adv; 2020 Nov; 6(45):. PubMed ID: 33148650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeasty clocks: dating genomic changes in yeasts.
    Rolland T; Dujon B
    C R Biol; 2011; 334(8-9):620-8. PubMed ID: 21819943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes.
    Chernikova D; Motamedi S; Csürös M; Koonin EV; Rogozin IB
    Biol Direct; 2011 May; 6():26. PubMed ID: 21595937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of microsynteny conservation and disease gene distribution in mammalian genomes.
    Lovell SC; Li X; Weerasinghe NR; Hentges KE
    BMC Genomics; 2009 Nov; 10():521. PubMed ID: 19909546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial genome evolution in yeasts: an all-encompassing view.
    Freel KC; Friedrich A; Schacherer J
    FEMS Yeast Res; 2015 Jun; 15(4):fov023. PubMed ID: 25969454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes.
    Nakatani Y; McLysaght A
    Bioinformatics; 2017 Jul; 33(14):i369-i378. PubMed ID: 28881993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial genome diversity across the subphylum Saccharomycotina.
    Wolters JF; LaBella AL; Opulente DA; Rokas A; Hittinger CT
    Front Microbiol; 2023; 14():1268944. PubMed ID: 38075892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes.
    Lovell JT; Sreedasyam A; Schranz ME; Wilson M; Carlson JW; Harkess A; Emms D; Goodstein DM; Schmutz J
    Elife; 2022 Sep; 11():. PubMed ID: 36083267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlating traits of gene retention, sequence divergence, duplicability and essentiality in vertebrates, arthropods, and fungi.
    Waterhouse RM; Zdobnov EM; Kriventseva EV
    Genome Biol Evol; 2011; 3():75-86. PubMed ID: 21148284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.