BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36334587)

  • 21. Correlating traits of gene retention, sequence divergence, duplicability and essentiality in vertebrates, arthropods, and fungi.
    Waterhouse RM; Zdobnov EM; Kriventseva EV
    Genome Biol Evol; 2011; 3():75-86. PubMed ID: 21148284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints.
    Irimia M; Tena JJ; Alexis MS; Fernandez-Miñan A; Maeso I; Bogdanovic O; de la Calle-Mustienes E; Roy SW; Gómez-Skarmeta JL; Fraser HB
    Genome Res; 2012 Dec; 22(12):2356-67. PubMed ID: 22722344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary convergence on highly-conserved 3' intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome.
    Irimia M; Roy SW
    PLoS Genet; 2008 Aug; 4(8):e1000148. PubMed ID: 18688272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole-genome microsynteny-based phylogeny of angiosperms.
    Zhao T; Zwaenepoel A; Xue JY; Kao SM; Li Z; Schranz ME; Van de Peer Y
    Nat Commun; 2021 Jun; 12(1):3498. PubMed ID: 34108452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitogenomics and mitochondrial gene phylogeny decipher the evolution of Saccharomycotina yeasts.
    Christinaki AC; Kanellopoulos SG; Kortsinoglou AM; Andrikopoulos MΑ; Theelen B; Boekhout T; Kouvelis VN
    Genome Biol Evol; 2022 May; 14(5):. PubMed ID: 35576568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study on synteny between yeasts and vertebrates.
    Drillon G; Fischer G
    C R Biol; 2011; 334(8-9):629-38. PubMed ID: 21819944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts.
    Steenwyk JL; Opulente DA; Kominek J; Shen XX; Zhou X; Labella AL; Bradley NP; Eichman BF; Čadež N; Libkind D; DeVirgilio J; Hulfachor AB; Kurtzman CP; Hittinger CT; Rokas A
    PLoS Biol; 2019 May; 17(5):e3000255. PubMed ID: 31112549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial Genome Diversity across the Subphylum Saccharomycotina.
    Wolters JF; LaBella AL; Opulente DA; Rokas A; Hittinger CT
    bioRxiv; 2023 Jul; ():. PubMed ID: 37577532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three Dimensional Organization of Genome Might Have Guided the Dynamics of Gene Order Evolution in Eukaryotes.
    Bagadia M; Singh A; Singh Sandhu K
    Genome Biol Evol; 2016 Apr; 8(3):946-54. PubMed ID: 26957031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of SET-domain protein families in the unicellular and multicellular Ascomycota fungi.
    Veerappan CS; Avramova Z; Moriyama EN
    BMC Evol Biol; 2008 Jul; 8():190. PubMed ID: 18593478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi.
    Hane JK; Rouxel T; Howlett BJ; Kema GH; Goodwin SB; Oliver RP
    Genome Biol; 2011; 12(5):R45. PubMed ID: 21605470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EvolClustDB: Exploring Eukaryotic Gene Clusters with Evolutionarily Conserved Genomic Neighbourhoods.
    Marcet-Houben M; Collado-Cala I; Fuentes-Palacios D; Gómez AD; Molina M; Garisoain-Zafra A; Chorostecki U; Gabaldón T
    J Mol Biol; 2023 Jul; 435(14):168013. PubMed ID: 36806474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-genome duplications spurred the functional diversification of the globin gene superfamily in vertebrates.
    Hoffmann FG; Opazo JC; Storz JF
    Mol Biol Evol; 2012 Jan; 29(1):303-12. PubMed ID: 21965344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events.
    Bowers JE; Chapman BA; Rong J; Paterson AH
    Nature; 2003 Mar; 422(6930):433-8. PubMed ID: 12660784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution.
    Dujon B
    Trends Genet; 2006 Jul; 22(7):375-87. PubMed ID: 16730849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The gain and loss of genes during 600 million years of vertebrate evolution.
    Blomme T; Vandepoele K; De Bodt S; Simillion C; Maere S; Van de Peer Y
    Genome Biol; 2006; 7(5):R43. PubMed ID: 16723033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina).
    Hérivaux A; Lavín JL; de Bernonville TD; Vandeputte P; Bouchara JP; Gastebois A; Oguiza JA; Papon N
    Curr Genet; 2018 Aug; 64(4):841-851. PubMed ID: 29249052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pan-evolutionary and regulatory genome architecture delineated by an integrated macro- and microsynteny approach.
    Yu H; Li Y; Han W; Bao L; Liu F; Ma Y; Pu Z; Zeng Q; Zhang L; Bao Z; Wang S
    Nat Protoc; 2024 Jun; 19(6):1623-1678. PubMed ID: 38514839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny.
    Kevei Z; Seres A; Kereszt A; Kaló P; Kiss P; Tóth G; Endre G; Kiss GB
    Mol Genet Genomics; 2005 Dec; 274(6):644-57. PubMed ID: 16273388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.