BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 36334859)

  • 1. CXCR4-targeted nitric oxide nanoparticles deliver PD-L1 siRNA for immunotherapy against glioblastoma.
    Hsieh HT; Huang HC; Chung CW; Chiang CC; Hsia T; Wu HF; Huang RL; Chiang CS; Wang J; Lu TT; Chen Y
    J Control Release; 2022 Dec; 352():920-930. PubMed ID: 36334859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle-mediated blockade of CXCL12/CXCR4 signaling enhances glioblastoma immunotherapy: Monitoring early responses with MRI radiomics.
    Wei R; Li J; Lin W; Pang X; Yang H; Lai S; Wei X; Jiang X; Yuan Y; Yang R
    Acta Biomater; 2024 Mar; 177():414-430. PubMed ID: 38360292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune checkpoint silencing using RNAi-incorporated nanoparticles enhances antitumor immunity and therapeutic efficacy compared with antibody-based approaches.
    Won JE; Byeon Y; Wi TI; Lee CM; Lee JH; Kang TH; Lee JW; Lee Y; Park YM; Han HD
    J Immunother Cancer; 2022 Feb; 10(2):. PubMed ID: 35228265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allomelanin-based biomimetic nanotherapeutics for orthotopic glioblastoma targeted photothermal immunotherapy.
    Sun M; Li Y; Zhang W; Gu X; Wen R; Zhang K; Mao J; Huang C; Zhang X; Nie M; Zhang Z; Qi C; Cai K; Liu G
    Acta Biomater; 2023 Aug; 166():552-566. PubMed ID: 37236575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic Delivery of an Adjuvant CXCR4-CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy.
    Alghamri MS; Banerjee K; Mujeeb AA; Mauser A; Taher A; Thalla R; McClellan BL; Varela ML; Stamatovic SM; Martinez-Revollar G; Andjelkovic AV; Gregory JV; Kadiyala P; Calinescu A; Jiménez JA; Apfelbaum AA; Lawlor ER; Carney S; Comba A; Faisal SM; Barissi M; Edwards MB; Appelman H; Sun Y; Gan J; Ackermann R; Schwendeman A; Candolfi M; Olin MR; Lahann J; Lowenstein PR; Castro MG
    ACS Nano; 2022 Jun; 16(6):8729-8750. PubMed ID: 35616289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune Checkpoint-Blocking Nanocages Cross the Blood-Brain Barrier and Impede Brain Tumor Growth.
    Kim M; Yoon HJ; Lee C; Lee M; Park RW; Lee B; Park EJ; Kim S
    ACS Biomater Sci Eng; 2024 Jan; 10(1):575-587. PubMed ID: 38150627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application prospect of peptide-modified nano targeting drug delivery system combined with PD-1/PD-L1 based immune checkpoint blockade in glioblastoma.
    Song P; Zhao X; Xiao S
    Int J Pharm; 2020 Nov; 589():119865. PubMed ID: 32919004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune Checkpoint Inhibition in GBM Primed with Radiation by Engineered Extracellular Vesicles.
    Tian T; Liang R; Erel-Akbaba G; Saad L; Obeid PJ; Gao J; Chiocca EA; Weissleder R; Tannous BA
    ACS Nano; 2022 Feb; 16(2):1940-1953. PubMed ID: 35099172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Trojan-Horse-Like Biomimetic Nano-NK to Elicit an Immunostimulatory Tumor Microenvironment for Enhanced GBM Chemo-Immunotherapy.
    Zhang L; Zhang Y; Wang X; Zhou Y; Qi J; Gu L; Zhao Q; Yu R; Zhou X
    Small; 2023 Nov; 19(44):e2301439. PubMed ID: 37420326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized ionizable cationic lipid for brain tumor-targeted siRNA delivery and glioblastoma immunotherapy.
    Liu S; Liu J; Li H; Mao K; Wang H; Meng X; Wang J; Wu C; Chen H; Wang X; Cong X; Hou Y; Wang Y; Wang M; Yang YG; Sun T
    Biomaterials; 2022 Aug; 287():121645. PubMed ID: 35779480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the PD-1/PD-L1 pathway in glioblastoma multiforme: Preclinical evidence and clinical interventions.
    Maghrouni A; Givari M; Jalili-Nik M; Mollazadeh H; Bibak B; Sadeghi MM; Afshari AR; Johnston TP; Sahebkar A
    Int Immunopharmacol; 2021 Apr; 93():107403. PubMed ID: 33581502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic targeting of tumor-associated myeloid cells synergizes with radiation therapy for glioblastoma.
    Zhang P; Miska J; Lee-Chang C; Rashidi A; Panek WK; An S; Zannikou M; Lopez-Rosas A; Han Y; Xiao T; Pituch KC; Kanojia D; Balyasnikova IV; Lesniak MS
    Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23714-23723. PubMed ID: 31712430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. M-MDSCs mediated trans-BBB drug delivery for suppression of glioblastoma recurrence post-standard treatment.
    Yu T; Wang K; Wang J; Liu Y; Meng T; Hu F; Yuan H
    J Control Release; 2024 May; 369():199-214. PubMed ID: 38537717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Synergistic Effects of the Microglia Membrane-Bionic Nanoplatform on Mediate Tumor Microenvironment Remodeling to Amplify Glioblastoma Immunotherapy.
    Fan Q; Kuang L; Wang B; Yin Y; Dong Z; Tian N; Wang J; Yin T; Wang Y
    ACS Nano; 2024 Jun; 18(22):14469-14486. PubMed ID: 38770948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coadministration of iRGD peptide with ROS-sensitive nanoparticles co-delivering siFGL1 and siPD-L1 enhanced tumor immunotherapy.
    Wan WJ; Huang G; Wang Y; Tang Y; Li H; Jia CH; Liu Y; You BG; Zhang XN
    Acta Biomater; 2021 Dec; 136():473-484. PubMed ID: 34571271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti-PD-L1 immunotherapy.
    Li Z; Wang Y; Shen Y; Qian C; Oupicky D; Sun M
    Sci Adv; 2020 May; 6(20):eaaz9240. PubMed ID: 32440550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment.
    Wu A; Maxwell R; Xia Y; Cardarelli P; Oyasu M; Belcaid Z; Kim E; Hung A; Luksik AS; Garzon-Muvdi T; Jackson CM; Mathios D; Theodros D; Cogswell J; Brem H; Pardoll DM; Lim M
    J Neurooncol; 2019 Jun; 143(2):241-249. PubMed ID: 31025274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemagglutinating virus of Japan-envelope containing programmed cell death-ligand 1 siRNA inhibits immunosuppressive activities and elicits antitumor immune responses in glioma.
    Sugii N; Matsuda M; Okumura G; Shibuya A; Ishikawa E; Kaneda Y; Matsumura A
    Cancer Sci; 2021 Jan; 112(1):81-90. PubMed ID: 33155337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists.
    Broggi G; Angelico G; Farina J; Tinnirello G; Barresi V; Zanelli M; Palicelli A; Certo F; Barbagallo G; Magro G; Caltabiano R
    Pathol Res Pract; 2024 Feb; 254():155144. PubMed ID: 38277747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor immunosuppression relief via acidity modulation combined PD-L1 siRNA for enhanced immunotherapy.
    Tang Y; Chang Q; Chen G; Zhao X; Huang G; Wang T; Jia C; Lu L; Jin T; Yang S; Cao L; Zhang X
    Biomater Adv; 2023 Jul; 150():213425. PubMed ID: 37084635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.