BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36335145)

  • 1. Phototoxic effects of nonlinear optical microscopy on cell cycle, oxidative states, and gene expression.
    Zhang X; Dorlhiac G; Landry MP; Streets A
    Sci Rep; 2022 Nov; 12(1):18796. PubMed ID: 36335145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Flexible Chamber for Time-Lapse Live-Cell Imaging with Stimulated Raman Scattering Microscopy.
    Yuan Y; Lu F
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36121285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical considerations for quantitative and reproducible measurements with stimulated Raman scattering microscopy.
    Tsikritsis D; Legge EJ; Belsey NA
    Analyst; 2022 Oct; 147(21):4642-4656. PubMed ID: 35997002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a Nonlinear Microscope Based on Stimulated Raman Scattering.
    Ranjan R; Indolfi M; Ferrara MA; Sirleto L
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31329172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Stimulated Raman Scattering Microscopy: Promises and Pitfalls.
    Manifold B; Fu D
    Annu Rev Anal Chem (Palo Alto Calif); 2022 Jun; 15(1):269-289. PubMed ID: 35300525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging chemistry inside living cells by stimulated Raman scattering microscopy.
    Lee HJ; Cheng JX
    Methods; 2017 Sep; 128():119-128. PubMed ID: 28746829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular Imaging Using Stimulated Raman Scattering Microscopy.
    Hill AH; Fu D
    Anal Chem; 2019 Aug; 91(15):9333-9342. PubMed ID: 31287649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse-Picking Multimodal Nonlinear Optical Microscopy.
    Clark MG; Gonzalez GA; Zhang C
    Anal Chem; 2022 Nov; 94(44):15405-15414. PubMed ID: 36282141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity.
    Zong C; Premasiri R; Lin H; Huang Y; Zhang C; Yang C; Ren B; Ziegler LD; Cheng JX
    Nat Commun; 2019 Nov; 10(1):5318. PubMed ID: 31754221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Comparison of Hyperspectral Stimulated Raman Scattering and Coherent Anti-Stokes Raman Scattering Microscopy for Chemical Imaging.
    Clark MG; Brasseale KA; Gonzalez GA; Eakins G; Zhang C
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35575496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy.
    Shi L; Klimas A; Gallagher B; Cheng Z; Fu F; Wijesekara P; Miao Y; Ren X; Zhao Y; Min W
    Adv Sci (Weinh); 2022 Jul; 9(20):e2200315. PubMed ID: 35521971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Counting and Imaging Chain Lengths of Lipids by Stimulated Raman Scattering Microscopy.
    Huang Z; Yan S; Li Y; Ju W; Wang P
    Anal Chem; 2023 Apr; 95(13):5815-5819. PubMed ID: 36943034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the Range of Bioorthogonal Tags for Multiplex Stimulated Raman Scattering Microscopy.
    Murphy N; Tipping WJ; Braddick HJ; Wilson LT; Tomkinson NCO; Faulds K; Graham D; Farràs P
    Angew Chem Int Ed Engl; 2023 Nov; 62(48):e202311530. PubMed ID: 37821742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex Chemical Imaging Based on Broadband Stimulated Raman Scattering Microscopy.
    De la Cadena A; Vernuccio F; Talone B; Bresci A; Ceconello C; Das S; Vanna R; Cerullo G; Polli D
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35938835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulated Raman scattering microscopy in chemistry and life science - Development, innovation, perspectives.
    Brzozowski K; Matuszyk E; Pieczara A; Firlej J; Nowakowska AM; Baranska M
    Biotechnol Adv; 2022 Nov; 60():108003. PubMed ID: 35690271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Parallel Fusion Network for Predicting Protein Subcellular Localization from Stimulated Raman Scattering (SRS) Microscopy Images in Living Cells.
    Wei Z; Liu W; Yu W; Liu X; Yan R; Liu Q; Guo Q
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-Free Cytometric Evaluation of Mitosis via Stimulated Raman Scattering Microscopy and Spectral Phasor Analysis.
    Hislop EW; Tipping WJ; Faulds K; Graham D
    Anal Chem; 2023 May; 95(18):7244-7253. PubMed ID: 37097612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope.
    Laptenok SP; Rajamanickam VP; Genchi L; Monfort T; Lee Y; Patel II; Bertoncini A; Liberale C
    J Biophotonics; 2019 Sep; 12(9):e201900028. PubMed ID: 31081280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-molecular hyperspectral PRM-SRS microscopy.
    Zhang W; Li Y; Fung AA; Li Z; Jang H; Zha H; Chen X; Gao F; Wu JY; Sheng H; Yao J; Skowronska-Krawczyk D; Jain S; Shi L
    Nat Commun; 2024 Feb; 15(1):1599. PubMed ID: 38383552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.