These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36335221)

  • 21. Optimized LOAM Using Ground Plane Constraints and SegMatch-Based Loop Detection.
    Liu X; Zhang L; Qin S; Tian D; Ouyang S; Chen C
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomimetic navigation system using a polarization sensor and a binocular camera.
    Li J; Chu J; Zhang R; Hu H; Tong K; Li J
    J Opt Soc Am A Opt Image Sci Vis; 2022 May; 39(5):847-854. PubMed ID: 36215446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trainable Quaternion Extended Kalman Filter with Multi-Head Attention for Dead Reckoning in Autonomous Ground Vehicles.
    Milam G; Xie B; Liu R; Zhu X; Park J; Kim G; Park CH
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exact flow of particles using for state estimations in unmanned aerial systems` navigation.
    Duymaz E; Oğuz AE; Temeltaş H
    PLoS One; 2020; 15(4):e0231412. PubMed ID: 32294135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid Indoor Localization Using IMU Sensors and Smartphone Camera.
    Poulose A; Han DS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time Lidar Odometry and Mapping with Loop Closure.
    Liu Y; Zhang W; Li F; Zuo Z; Huang Q
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SLAM Back-End Optimization Algorithm Based on Vision Fusion IPS.
    Xia Y; Cheng J; Cai X; Zhang S; Zhu J; Zhu L
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.
    Piao JC; Kim SD
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29112143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust Stereo Visual Inertial Navigation System Based on Multi-Stage Outlier Removal in Dynamic Environments.
    Nam DV; Gon-Woo K
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32455697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LiDAR Point Cloud Generation for SLAM Algorithm Evaluation.
    Sobczak Ł; Filus K; Domański A; Domańska J
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GPS-supported visual SLAM with a rigorous sensor model for a panoramic camera in outdoor environments.
    Shi Y; Ji S; Shi Z; Duan Y; Shibasaki R
    Sensors (Basel); 2012 Dec; 13(1):119-36. PubMed ID: 23344377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concurrent initialization for Bearing-Only SLAM.
    Munguía R; Grau A
    Sensors (Basel); 2010; 10(3):1511-34. PubMed ID: 22294884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensor Fusion-Based Approach to Eliminating Moving Objects for SLAM in Dynamic Environments.
    Dang X; Rong Z; Liang X
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CVIDS: A Collaborative Localization and Dense Mapping Framework for Multi-Agent Based Visual-Inertial SLAM.
    Zhang T; Zhang L; Chen Y; Zhou Y
    IEEE Trans Image Process; 2022; 31():6562-6576. PubMed ID: 36240038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.
    Lee D; Myung H
    Sensors (Basel); 2014 Jul; 14(7):12467-96. PubMed ID: 25019633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under ROS.
    Zhao J; Liu S; Li J
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of visual SLAM and IMU in tracking head movement outdoors.
    Kumar A; Pundlik S; Peli E; Luo G
    Behav Res Methods; 2023 Sep; 55(6):2787-2799. PubMed ID: 35953662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.
    Segura MJ; Auat Cheein FA; Toibero JM; Mut V; Carelli R
    Sensors (Basel); 2011; 11(2):2035-55. PubMed ID: 22319397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.