These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36335247)

  • 1. Humans modulate arm stiffness to facilitate motor communication during overground physical human-robot interaction.
    Regmi S; Burns D; Song YS
    Sci Rep; 2022 Nov; 12(1):18767. PubMed ID: 36335247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of the Human Arm Stiffness Estimation Method Developed for Overground Physical Interaction Experiments.
    Kamma TK; Regmi S; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robot for overground physical human-robot interaction experiments.
    Regmi S; Burns D; Song YS
    PLoS One; 2022; 17(11):e0276980. PubMed ID: 36355780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small forces that differ with prior motor experience can communicate movement goals during human-human physical interaction.
    Sawers A; Bhattacharjee T; McKay JL; Hackney ME; Kemp CC; Ting LH
    J Neuroeng Rehabil; 2017 Jan; 14(1):8. PubMed ID: 28143521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing small interaction forces through proprioception.
    Rashid F; Burns D; Song YS
    Sci Rep; 2021 Nov; 11(1):21829. PubMed ID: 34750408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation by Expert Dancers of a Robot That Performs Partnered Stepping via Haptic Interaction.
    Chen TL; Bhattacharjee T; McKay JL; Borinski JE; Hackney ME; Ting LH; Kemp CC
    PLoS One; 2015; 10(5):e0125179. PubMed ID: 25993099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting the sensitivity to small interaction forces in humans
    Rashid F; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6066-6069. PubMed ID: 34892500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm.
    Dizio P; Lackner JR
    J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal configurations for stiffness and compliance in human & robot arms.
    Woolfrey J; Ajoudani A; Lu W; Natale L
    PLoS One; 2024; 19(5):e0302987. PubMed ID: 38809855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arm stiffness during assisted movement after stroke: the influence of visual feedback and training.
    Piovesan D; Morasso P; Giannoni P; Casadio M
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):454-65. PubMed ID: 23193322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does?
    Kahn LE; Lum PS; Rymer WZ; Reinkensmeyer DJ
    J Rehabil Res Dev; 2006; 43(5):619-30. PubMed ID: 17123203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication and Inference of Intended Movement Direction during Human-Human Physical Interaction.
    Mojtahedi K; Whitsell B; Artemiadis P; Santello M
    Front Neurorobot; 2017; 11():21. PubMed ID: 28450834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multijoint arm stiffness during movements following stroke: implications for robot therapy.
    Piovesan D; Casadio M; Mussa-Ivaldi FA; Morasso PG
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975372. PubMed ID: 22275576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the dynamic impedance of the human arm without a force sensor.
    Dyck M; Tavakoli M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650349. PubMed ID: 24187168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communication and knowledge sharing in human-robot interaction and learning from demonstration.
    Koenig N; Takayama L; Matarić M
    Neural Netw; 2010; 23(8-9):1104-12. PubMed ID: 20598503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information.
    Strauss S; Woodgate PJ; Sami SA; Heinke D
    Neural Netw; 2015 Dec; 72():3-12. PubMed ID: 26667353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation.
    Mick S; Badets A; Oudeyer PY; Cattaert D; De Rugy A
    Hum Factors; 2022 Mar; 64(2):372-384. PubMed ID: 32809867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.