BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36335713)

  • 1. Studying antibiotic persistence in vivo using the model organism Salmonella Typhimurium.
    Newson JP; Gaissmaier MS; McHugh SC; Hardt WD
    Curr Opin Microbiol; 2022 Dec; 70():102224. PubMed ID: 36335713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut.
    Bakkeren E; Huisman JS; Fattinger SA; Hausmann A; Furter M; Egli A; Slack E; Sellin ME; Bonhoeffer S; Regoes RR; Diard M; Hardt WD
    Nature; 2019 Sep; 573(7773):276-280. PubMed ID: 31485077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RNA-Binding Protein ProQ Promotes Antibiotic Persistence in Salmonella.
    Rizvanovic A; Michaux C; Panza M; Iloglu Z; Helaine S; Wagner EGH; Holmqvist E
    mBio; 2022 Dec; 13(6):e0289122. PubMed ID: 36409088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium.
    Diard M; Sellin ME; Dolowschiak T; Arnoldini M; Ackermann M; Hardt WD
    Curr Biol; 2014 Sep; 24(17):2000-5. PubMed ID: 25131673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations of Salmonella enterica Serovar Typhimurium Antibiotic Resistance under Environmental Pressure.
    Peng M; Salaheen S; Buchanan RL; Biswas D
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30054356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary causes and consequences of bacterial antibiotic persistence.
    Bakkeren E; Diard M; Hardt WD
    Nat Rev Microbiol; 2020 Sep; 18(9):479-490. PubMed ID: 32461608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic Processes in
    Diard M; Hardt WD
    Microbiol Spectr; 2017 Sep; 5(5):. PubMed ID: 28884670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Salmonella Persister Population Sizes, Dynamics of Gut Luminal Seeding, and Plasmid Transfer in Mouse Models of Salmonellosis.
    Bakkeren E; Newson JPM; Hardt WD
    Methods Mol Biol; 2021; 2357():253-272. PubMed ID: 34590264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of gene expression and protein structural modeling involved in persister cell formation in Salmonella Typhimurium.
    Narimisa N; Amraei F; Kalani BS; Jazi FM
    Braz J Microbiol; 2021 Mar; 52(1):207-217. PubMed ID: 33125683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics.
    Defraine V; Fauvart M; Michiels J
    Drug Resist Updat; 2018 May; 38():12-26. PubMed ID: 29857815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Mobilizable Plasmid P3 of Salmonella enterica Serovar Typhimurium SL1344 Depends on the P2 Plasmid for Conjugative Transfer into a Broad Range of Bacteria
    Gaissmaier MS; Laganenka L; Herzog MK; Bakkeren E; Hardt WD
    J Bacteriol; 2022 Dec; 204(12):e0034722. PubMed ID: 36383016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells.
    Harms A; Fino C; Sørensen MA; Semsey S; Gerdes K
    mBio; 2017 Dec; 8(6):. PubMed ID: 29233898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vulnerable versatility of Salmonella antibiotic persisters during infection.
    Hill PWS; Moldoveanu AL; Sargen M; Ronneau S; Glegola-Madejska I; Beetham C; Fisher RA; Helaine S
    Cell Host Microbe; 2021 Dec; 29(12):1757-1773.e10. PubMed ID: 34731646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic resistance and persistence-Implications for human health and treatment perspectives.
    Huemer M; Mairpady Shambat S; Brugger SD; Zinkernagel AS
    EMBO Rep; 2020 Dec; 21(12):e51034. PubMed ID: 33400359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Trade-Off for Maintenance of Multidrug-Resistant IncHI2 Plasmids in Salmonella enterica Serovar Typhimurium through Adaptive Evolution.
    Zhang JF; Fang LX; Chang MX; Cheng M; Zhang H; Long TF; Li Q; Lian XL; Sun J; Liao XP; Liu YH
    mSystems; 2022 Oct; 7(5):e0024822. PubMed ID: 36040022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic heterogeneity in persisters: a novel 'hunker' theory of persistence.
    Urbaniec J; Xu Y; Hu Y; Hingley-Wilson S; McFadden J
    FEMS Microbiol Rev; 2022 Jan; 46(1):. PubMed ID: 34355746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host stress drives tolerance and persistence: The bane of anti-microbial therapeutics.
    Helaine S; Conlon BP; Davis KM; Russell DG
    Cell Host Microbe; 2024 Jun; 32(6):852-862. PubMed ID: 38870901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying Antibiotic Persistence During Infection.
    Michaux C; Ronneau S; Helaine S
    Methods Mol Biol; 2021; 2357():273-289. PubMed ID: 34590265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation.
    Arnoldini M; Vizcarra IA; Peña-Miller R; Stocker N; Diard M; Vogel V; Beardmore RE; Hardt WD; Ackermann M
    PLoS Biol; 2014 Aug; 12(8):e1001928. PubMed ID: 25136970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular reprogramming and phenotype switching in
    Huemer M; Mairpady Shambat S; Bergada-Pijuan J; Söderholm S; Boumasmoud M; Vulin C; Gómez-Mejia A; Antelo Varela M; Tripathi V; Götschi S; Marques Maggio E; Hasse B; Brugger SD; Bumann D; Schuepbach RA; Zinkernagel AS
    Proc Natl Acad Sci U S A; 2021 Feb; 118(7):. PubMed ID: 33574060
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.