BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36335749)

  • 1. Detection of hazardous chemical using dual-wavelength Raman spectroscopy in the ultraviolet region.
    Lee JH; Jeong YS; Koh YJ; Kim J; Nam H; Son H; Choi SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122061. PubMed ID: 36335749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standoff Detection System Using Raman Spectroscopy in the Deep-Ultraviolet Wavelength Region for the Detection of Hazardous Gas.
    Eto S; Ichikawa Y; Ogita M; Sugimoto S; Asahi I
    Appl Spectrosc; 2022 Oct; 76(10):1246-1253. PubMed ID: 35354330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable kHz deep ultraviolet (193-210 nm) laser for Raman application.
    Balakrishnan G; Hu Y; Nielsen SB; Spiro TG
    Appl Spectrosc; 2005 Jun; 59(6):776-81. PubMed ID: 16053544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet resonance Raman spectroscopy of bacteriorhodopsin.
    Netto MM; Fodor SP; Mathies RA
    Photochem Photobiol; 1990 Sep; 52(3):605-7. PubMed ID: 2284352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes.
    Mildren RP; Piper JA
    Opt Express; 2008 Mar; 16(5):3261-72. PubMed ID: 18542414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy using a spatial heterodyne spectrometer: proof of concept.
    Gomer NR; Gordon CM; Lucey P; Sharma SK; Carter JC; Angel SM
    Appl Spectrosc; 2011 Aug; 65(8):849-57. PubMed ID: 21819774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents.
    Christesen SD; Pendell Jones J; Lochner JM; Hyre AM
    Appl Spectrosc; 2008 Oct; 62(10):1078-83. PubMed ID: 18926015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopic investigation of solid samples using a low-repetition-rate pulsed Nd:YAG laser as the excitation source.
    Zhang J; Feng Z; Li M; Chen J; Xu Q; Lian Y; Li C
    Appl Spectrosc; 2007 Jan; 61(1):38-47. PubMed ID: 17311715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources.
    István K; Keresztury G; Szép A
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1709-23. PubMed ID: 12736057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins.
    Lednev IK; Ermolenkov VV; He W; Xu M
    Anal Bioanal Chem; 2005 Jan; 381(2):431-7. PubMed ID: 15625596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of laser wavelength on the Raman Spectra of phenanthrene, chrysene, and tetracene: implications for extra-terrestrial detection of polyaromatic hydrocarbons.
    Alajtal AI; Edwards HG; Elbagerma MA; Scowen IJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jun; 76(1):1-5. PubMed ID: 20308013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Frequency Raman Analysis in Biological Tissues Using Dual-Wavelength Excitation Raman Spectroscopy.
    He W; Li B; Yang S
    Appl Spectrosc; 2020 Feb; 74(2):241-244. PubMed ID: 31617369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swept-source Raman spectroscopy of chemical and biological materials.
    Song J; So PTC; Yoo H; Kang JW
    J Biomed Opt; 2024 Jun; 29(Suppl 2):S22703. PubMed ID: 38584965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-shot stand-off chemical identification of powders using random Raman lasing.
    Hokr BH; Bixler JN; Noojin GD; Thomas RJ; Rockwell BA; Yakovlev VV; Scully MO
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12320-4. PubMed ID: 25114231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy.
    Ghita A; Matousek P; Stone N
    Analyst; 2016 Oct; 141(20):5738-5746. PubMed ID: 27464358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength tunable and amplitude-equilibrium dual-wavelength lasing sources with dual-pass Raman/Brillouin amplification configuration.
    Liu YG; Wang D
    Opt Express; 2008 Mar; 16(6):3583-8. PubMed ID: 18542451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of Raman spectroscopy at different wavelengths for extremophile exemplars.
    Villar SE; Edwards HG; Worland MR
    Orig Life Evol Biosph; 2005 Oct; 35(5):489-506. PubMed ID: 16231211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of the SHERLOC Deep Ultraviolet Fluorescence-Raman Spectrometer on the
    Uckert K; Bhartia R; Beegle LW; Monacelli B; Asher SA; Burton AS; Bykov SV; Davis K; Fries MD; Jakubek RS; Hollis JR; Roppel RD; Wu YH
    Appl Spectrosc; 2021 Jul; 75(7):763-773. PubMed ID: 33876994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-wavelength excitation combined Raman spectroscopy for detection of highly fluorescent samples.
    Ye J; Li J; Lu M; Qi X; Li B; Wei H; Li Y; Zou M
    Appl Opt; 2021 Aug; 60(23):6918-6927. PubMed ID: 34613173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman enhancement optimization in the visible range by selecting different excitation wavelengths.
    Wang Z; Li Y
    J Biomed Opt; 2015 Sep; 20(9):095003. PubMed ID: 26334974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.