These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36336063)
61. Activated peroxydisulfate by sorghum straw-based biochar for enhanced tartrazine degradation: Roles of adsorption and radical/nonradical processes. Chen X; Zhou Y; Li J; Pillai SC; Bolan N; He J; Li N; Xu S; Chen X; Lin Q; Wang H Environ Pollut; 2023 Jan; 316(Pt 2):120665. PubMed ID: 36395910 [TBL] [Abstract][Full Text] [Related]
62. Mechanisms and influencing factors for electron transfer complex in metal-biochar nanocomposites activated peroxydisulfate. Luo H; Wan Y; Zhou H; Cai Y; Zhu M; Dang Z; Yin H J Hazard Mater; 2022 Sep; 438():129461. PubMed ID: 35780737 [TBL] [Abstract][Full Text] [Related]
63. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process. Zhao Y; Yuan X; Li X; Jiang L; Wang H J Hazard Mater; 2021 May; 409():124893. PubMed ID: 33418291 [TBL] [Abstract][Full Text] [Related]
65. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect. He J; Xiao Y; Tang J; Chen H; Sun H Sci Total Environ; 2019 Nov; 690():768-777. PubMed ID: 31302542 [TBL] [Abstract][Full Text] [Related]
66. Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: Catalytic performance and mechanism. Li X; Liao F; Ye L; Yeh L J Hazard Mater; 2020 Nov; 398():122938. PubMed ID: 32512451 [TBL] [Abstract][Full Text] [Related]
67. Reactivity of aged biochars to the degradation of adsorbed p-nitrophenol: Role of intensity and species of persistent free radicals. Zhao J; Zhang Y; Chu G Chemosphere; 2023 Dec; 344():140362. PubMed ID: 37797894 [TBL] [Abstract][Full Text] [Related]
68. Ball-milled bismuth oxybromide/biochar composites with enhanced removal of reactive red owing to the synergy between adsorption and photodegradation. Luo Y; Han Y; Xue M; Xie Y; Yin Z; Xie C; Li X; Zheng Y; Huang J; Zhang Y; Yang Y; Gao B J Environ Manage; 2022 Apr; 308():114652. PubMed ID: 35124312 [TBL] [Abstract][Full Text] [Related]
69. Highly-efficient degradation of organic pollutants by oxalic acid modified sludge biochar: Mechanism and pathways. Tang X; Lei Y; Yu C; Wang C; Zhang P; Lu H Chemosphere; 2023 Jun; 325():138409. PubMed ID: 36925015 [TBL] [Abstract][Full Text] [Related]
70. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Yan J; Han L; Gao W; Xue S; Chen M Bioresour Technol; 2015 Jan; 175():269-74. PubMed ID: 25459832 [TBL] [Abstract][Full Text] [Related]
71. Fast peroxydisulfate oxidation of the antibiotic norfloxacin catalyzed by cyanobacterial biochar. Wang C; Hansen HCB; Andersen ML; Strobel BW; Ma H; Dodge N; Jensen PE; Lu C; Holm PE J Hazard Mater; 2022 Oct; 439():129655. PubMed ID: 35901634 [TBL] [Abstract][Full Text] [Related]
72. Three-dimensional porous graphene-like biochar derived from Enteromorpha as a persulfate activator for sulfamethoxazole degradation: Role of graphitic N and radicals transformation. Qi Y; Ge B; Zhang Y; Jiang B; Wang C; Akram M; Xu X J Hazard Mater; 2020 Nov; 399():123039. PubMed ID: 32534393 [TBL] [Abstract][Full Text] [Related]
73. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Fang G; Gao J; Liu C; Dionysiou DD; Wang Y; Zhou D Environ Sci Technol; 2014; 48(3):1902-10. PubMed ID: 24422431 [TBL] [Abstract][Full Text] [Related]
74. Neglected but Efficient Electron Utilization Driven by Biochar-Coactivated Phenols and Peroxydisulfate: Polyphenol Accumulation Rather than Mineralization. Dou J; Tang Y; Lu Z; He G; Xu J; He Y Environ Sci Technol; 2023 Apr; 57(14):5703-5713. PubMed ID: 36932960 [TBL] [Abstract][Full Text] [Related]
75. Magnetized algae catalyst by endogenous N to effectively trigger peroxodisulfate activation for ultrafast degraded sulfathiazole: Radical evolution and electron transfer. Diao Y; Shan R; Li M; Li S; Huhe T; Yuan H; Chen Y Chemosphere; 2023 Nov; 342():140205. PubMed ID: 37722535 [TBL] [Abstract][Full Text] [Related]
76. Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: Structure-function relationship and reaction mechanism. Yin H; Yao F; Pi Z; Zhong Y; He L; Hou K; Fu J; Chen S; Tao Z; Wang D; Li X; Yang Q J Colloid Interface Sci; 2021 Mar; 586():551-562. PubMed ID: 33246653 [TBL] [Abstract][Full Text] [Related]
77. Activation of persulfate by swine bone derived biochar: Insight into the specific role of different active sites and the toxicity of acetaminophen degradation pathways. Zhou X; Lai C; Liu S; Li B; Qin L; Liu X; Yi H; Fu Y; Li L; Zhang M; Yan H; Wang J; Chen M; Zeng G Sci Total Environ; 2022 Feb; 807(Pt 3):151059. PubMed ID: 34678361 [TBL] [Abstract][Full Text] [Related]
78. Synthesis of an Environmentally Friendly Modified Mulberry Branch-Derived Biochar Composite: High Degradation Efficiency of BPA and Mitigation of Toxicity in Silkworm Larvae. Qu H; Chen L; Yang F; Zhu J; Qi C; Peng G Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835021 [TBL] [Abstract][Full Text] [Related]
79. Accelerate sulfamethoxazole degradation and detoxification by persulfate mediated with Fe Song W; Zhou Y; Wang Z; Li J; Zhang X; Fu C; Du X; Wang Z; Qiu W J Hazard Mater; 2022 Aug; 436():129254. PubMed ID: 35739773 [TBL] [Abstract][Full Text] [Related]
80. Comparison of radical and non-radical activated persulfate systems for the degradation of imidacloprid in water. Hayat W; Zhang Y; Hussain I; Huang S; Du X Ecotoxicol Environ Saf; 2020 Jan; 188():109891. PubMed ID: 31740236 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]