BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36336370)

  • 1. Countermeasure development against space radiation-induced gastrointestinal carcinogenesis: Current and future perspectives.
    Suman S; Fornace AJ
    Life Sci Space Res (Amst); 2022 Nov; 35():53-59. PubMed ID: 36336370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medical Countermeasure Requirements to Meet NASA's Space Radiation Permissible Exposure Limits for a Mars Mission Scenario.
    Werneth CM; Slaba TC; Huff JL; Patel ZS; Simonsen LC
    Health Phys; 2022 Aug; 123(2):116-127. PubMed ID: 35551137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methodology for investigating the impact of medical countermeasures on the risk of exposure induced death.
    Werneth CM; Slaba TC; Blattnig SR; Huff JL; Norman RB
    Life Sci Space Res (Amst); 2020 May; 25():72-102. PubMed ID: 32414495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dietary aspirin on high-LET radiation-induced prostaglandin E2 levels and gastrointestinal tumorigenesis in Apc
    Suman S; Kumar S; Moon BH; Angdisen J; Kallakury BVS; Datta K; Fornace AJ
    Life Sci Space Res (Amst); 2021 Nov; 31():85-91. PubMed ID: 34689954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers.
    Williams JR; Zhang Y; Zhou H; Osman M; Cha D; Kavet R; Cuccinotta F; Dicello JF; Dillehay LE
    Mutat Res; 1999 Dec; 430(2):255-69. PubMed ID: 10631340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.
    Smirnova OA; Cucinotta FA
    Life Sci Space Res (Amst); 2018 Feb; 16():76-83. PubMed ID: 29475522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of space radiation fatality risk for exploration missions.
    Cucinotta FA; To K; Cacao E
    Life Sci Space Res (Amst); 2017 May; 13():1-11. PubMed ID: 28554504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Getting ready for the manned mission to Mars: the astronauts' risk from space radiation.
    Hellweg CE; Baumstark-Khan C
    Naturwissenschaften; 2007 Jul; 94(7):517-26. PubMed ID: 17235598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predominant contribution of the dose received from constituent heavy-ions in the induction of gastrointestinal tumorigenesis after simulated space radiation exposure.
    Suman S; Kumar S; Kallakury BVS; Moon BH; Angdisen J; Datta K; Fornace AJ
    Radiat Environ Biophys; 2022 Nov; 61(4):631-637. PubMed ID: 36167896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Health care for deep space explorers.
    Thirsk RB
    Ann ICRP; 2020 Dec; 49(1_suppl):182-184. PubMed ID: 32734760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiation-promotion model of tumor prevalence in mice from space radiation exposures.
    Cucinotta FA; Wilson JW
    Radiat Environ Biophys; 1995 Aug; 34(3):145-9. PubMed ID: 7480628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Space radiation risks for astronauts on multiple International Space Station missions.
    Cucinotta FA
    PLoS One; 2014; 9(4):e96099. PubMed ID: 24759903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy ion carcinogenesis and human space exploration.
    Durante M; Cucinotta FA
    Nat Rev Cancer; 2008 Jun; 8(6):465-72. PubMed ID: 18451812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiovascular effects of space radiation: implications for future human deep space exploration.
    Mitchell A; Pimenta D; Gill J; Ahmad H; Bogle R
    Eur J Prev Cardiol; 2019 Nov; 26(16):1707-1714. PubMed ID: 30776915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Need for Biological Countermeasures to Mitigate the Risk of Space Radiation-Induced Carcinogenesis, Cardiovascular Disease, and Central Nervous System Deficiencies.
    Sishc BJ; Zawaski J; Saha J; Carnell LS; Fabre KM; Elgart SR
    Life Sci Space Res (Amst); 2022 Nov; 35():4-8. PubMed ID: 36336368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.
    Wang J; Zhang X; Wang P; Wang X; Farris AB; Wang Y
    Life Sci Space Res (Amst); 2016 Jun; 9():48-55. PubMed ID: 27345200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concepts and challenges in cancer risk prediction for the space radiation environment.
    Barcellos-Hoff MH; Blakely EA; Burma S; Fornace AJ; Gerson S; Hlatky L; Kirsch DG; Luderer U; Shay J; Wang Y; Weil MM
    Life Sci Space Res (Amst); 2015 Jul; 6():92-103. PubMed ID: 26256633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How safe is safe enough? Radiation risk for a human mission to Mars.
    Cucinotta FA; Kim MH; Chappell LJ; Huff JL
    PLoS One; 2013; 8(10):e74988. PubMed ID: 24146746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Million Person Study relevance to space exploration and Mars.
    Boice JD
    Int J Radiat Biol; 2022; 98(4):551-559. PubMed ID: 30831048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainties in estimates of the risks of late effects from space radiation.
    Cucinotta FA; Schimmerling W; Wilson JW; Peterson LE; Saganti PB; Dicello JF
    Adv Space Res; 2004; 34(6):1383-9. PubMed ID: 15881779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.