These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36336446)

  • 1. The application of TreadMatch scans to aid the process of footwear mark comparison.
    Reel S; Harris R; Reidy S; Chambers J
    Sci Justice; 2022 Sep; 62(5):530-539. PubMed ID: 36336446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical note: The Next Step - a semi-automatic coding and comparison system for forensic footwear impressions.
    Daniel O; Levi A; Pertsev R; Issan Y; Pasternak Z; Cohen A
    Forensic Sci Int; 2022 Aug; 337():111378. PubMed ID: 35839684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A footwear marks database in Western Switzerland: A forensic intelligence success.
    Pasquier J
    Forensic Sci Int; 2023 Jul; 348():111726. PubMed ID: 37164773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of non-contact scanning to forensic podiatry: A feasibility study.
    Crowther M; Reidy S; Walker J; Islam M; Thompson T
    Sci Justice; 2021 Jan; 61(1):79-88. PubMed ID: 33357830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating forensic casework scenarios in experimental studies: The generation of footwear marks in blood.
    McElhone RL; Meakin GE; French JC; Alexander T; Morgan RM
    Forensic Sci Int; 2016 Jul; 264():34-40. PubMed ID: 27017082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the quality of footwear marks recovered from simulated graves.
    Stephens M; Errickson D; Giles SB; Ringrose TJ
    Sci Justice; 2020 Nov; 60(6):512-521. PubMed ID: 33077034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between visible wavelength hyperspectral imaging and digital photography for the detection and identification of bloodstained footwear marks.
    Crowther M; Li B; Thompson T; Islam M
    J Forensic Sci; 2021 Nov; 66(6):2424-2437. PubMed ID: 34363402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effectiveness of forensic evidence in the investigation of volume crime scenes.
    Wüllenweber S; Giles S
    Sci Justice; 2021 Sep; 61(5):542-554. PubMed ID: 34482934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing state of motion through two-dimensional foot and shoe print analysis: A pilot study.
    Neves FB; Arnold GP; Nasir S; Wang W; MacDonald C; Christie I; Abboud RJ
    Forensic Sci Int; 2018 Mar; 284():176-183. PubMed ID: 29408727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A metric study of insole foot impressions in footwear of identical twins.
    Nirenberg MS; Krishan K; Kanchan T
    J Forensic Leg Med; 2017 Nov; 52():116-121. PubMed ID: 28918370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical discrimination of footwear: a method for the comparison of accidentals on shoe outsoles inspired by facial recognition techniques.
    Petraco ND; Gambino C; Kubic TA; Olivio D; Petraco N
    J Forensic Sci; 2010 Jan; 55(1):34-41. PubMed ID: 19895540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shoeprint image retrieval and crime scene shoeprint image linking by using convolutional neural network and normalized cross correlation.
    Wen Z; Curran JM; Wevers G
    Sci Justice; 2023 Jul; 63(4):439-450. PubMed ID: 37453775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ShoeCase: A data set of mock crime scene footwear impressions.
    Tibben A; McGuire M; Renfro S; Carriquiry A
    Data Brief; 2023 Oct; 50():109546. PubMed ID: 37780466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional metric comparisons between dynamic bare footprints and insole foot impressions-forensic implications.
    Nirenberg MS; Ansert E; Krishan K; Kanchan T
    Sci Justice; 2020 Mar; 60(2):145-150. PubMed ID: 32111287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evidential value of distorted and rectified digital images in footwear imprint examination.
    Shor Y; Chaikovsky A; Tsach T
    Forensic Sci Int; 2006 Jun; 160(1):59-65. PubMed ID: 16191473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a spatial-temporal method for the geographic investigation of shoeprint evidence.
    Lin G; Elmes G; Walnoha M; Chen X
    J Forensic Sci; 2009 Jan; 54(1):152-8. PubMed ID: 19018933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel technique for automatic shoeprint image retrieval.
    AlGarni G; Hamiane M
    Forensic Sci Int; 2008 Oct; 181(1-3):10-4. PubMed ID: 18829192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of similarity between randomly acquired characteristics on high quality exemplars and crime scene impressions via analysis of feature size and shape.
    Richetelli N; Nobel M; Bodziak WJ; Speir JA
    Forensic Sci Int; 2017 Jan; 270():211-222. PubMed ID: 27838107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy, reproducibility, and repeatability of forensic footwear examiner decisions.
    Austin Hicklin R; McVicker BC; Parks C; LeMay J; Richetelli N; Smith M; Buscaglia J; Perlman RS; Peters EM; Eckenrode BA
    Forensic Sci Int; 2022 Oct; 339():111418. PubMed ID: 35987091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method for the recovery and evidential comparison of footwear impressions using 3D structured light scanning.
    Thompson TJU; Norris P
    Sci Justice; 2018 May; 58(3):237-243. PubMed ID: 29685306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.