These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36336459)

  • 1. Rapid changes in profiles from stored materials used in scent training of explosive detection dogs.
    Mörén L; Bergström F; Brantlind M; Wingfors H
    Sci Justice; 2022 Sep; 62(5):657-665. PubMed ID: 36336459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an odor permeable membrane device for the storage of explosives and use as canine training aids.
    Davis K; Reavis M; Goodpaster JV
    J Forensic Sci; 2023 May; 68(3):815-827. PubMed ID: 36912418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.
    Kranz WD; Strange NA; Goodpaster JV
    Anal Bioanal Chem; 2014 Dec; 406(30):7817-25. PubMed ID: 25424725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of canine training aids containment for homemade explosive and components by headspace analysis and canine testing.
    Katilie CJ; DeGreeff LE; Sharpes CE; Best EM; Buckley PE; Gadberry JD; Maughan MN
    J Forensic Sci; 2023 Nov; 68(6):2021-2036. PubMed ID: 37691017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of vapor profiles of explosives over time using ATASS (Automated Training Aid Simulation using SPME).
    Moore S; Maccrehan W; Schantz M
    Forensic Sci Int; 2011 Oct; 212(1-3):90-5. PubMed ID: 21696900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of membrane properties on the odor emanating from training aids for explosive-detecting canines.
    Upadhyaya H; Goodpaster JV
    Anal Bioanal Chem; 2024 Jul; 416(18):4219-4225. PubMed ID: 38847872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical properties of odorants affect behavior of trained detection dogs during close-quarters searches.
    Mejia D; Burnett L; Hebdon N; Stevens P; Shiber A; Cranston C; DeGreeff L; Waldrop LD
    Sci Rep; 2024 Feb; 14(1):4843. PubMed ID: 38418891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The analysis of nitrate explosive vapour samples using Lab-on-a-chip instrumentation.
    Taranto V; Ueland M; Forbes SL; Blanes L
    J Chromatogr A; 2019 Sep; 1602():467-473. PubMed ID: 31178161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canine detection of explosives under adverse environmental conditions with and without acclimation training.
    Kane SA; Fernandez LS; Huff DE; Prada-Tiedemann PA; Hall NJ
    PLoS One; 2024; 19(2):e0297538. PubMed ID: 38381723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Canine olfactory detection of trained explosive and narcotic odors in mixtures using a Mixed Odor Delivery Device.
    DeGreeff LE; Peranich K
    Forensic Sci Int; 2021 Dec; 329():111059. PubMed ID: 34715445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of oral administration of metronidazole and doxycycline on olfactory capabilities of explosives detection dogs.
    Jenkins EK; Lee-Fowler TM; Angle TC; Behrend EN; Moore GE
    Am J Vet Res; 2016 Aug; 77(8):906-12. PubMed ID: 27463556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous detection and quantification of explosives by a modified hollow cathode discharge ion source.
    Habib A; Bi L; Wen L
    Talanta; 2021 Oct; 233():122596. PubMed ID: 34215084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Recent advances in stable isotope ratio analysis of common explosives].
    Hu C; Mei H; Guo H; Sun Z; Liu Z; Zhu J
    Se Pu; 2021 Apr; 39(4):376-383. PubMed ID: 34227757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosecurity Dogs Detect Live Insects after Training with Odor-Proxy Training Aids: Scent Extract and Dead Specimens.
    Moser AY; Brown WY; Bizo LA; Andrew NR; Taylor MK
    Chem Senses; 2020 Apr; 45(3):179-186. PubMed ID: 31919506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive scent-detection of COVID-19 patients in vivo by trained dogs.
    Vesga O; Agudelo M; Valencia-Jaramillo AF; Mira-Montoya A; Ossa-Ospina F; Ocampo E; Čiuoderis K; Pérez L; Cardona A; Aguilar Y; Agudelo Y; Hernández-Ortiz JP; Osorio JE
    PLoS One; 2021; 16(9):e0257474. PubMed ID: 34587181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry.
    Lai H; Leung A; Magee M; Almirall JR
    Anal Bioanal Chem; 2010 Apr; 396(8):2997-3007. PubMed ID: 20229010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and On-Scene Chemical Identification of Intact Explosives with Portable Near-Infrared Spectroscopy and Multivariate Data Analysis.
    van Damme IM; Mestres-Fitó P; Ramaker HJ; Hulsbergen AWC; van der Heijden AEDM; Kranenburg RF; van Asten AC
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection.
    Perr JM; Furton KG; Almirall JR
    J Sep Sci; 2005 Feb; 28(2):177-83. PubMed ID: 15754826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canine human scent identifications with post-blast debris collected from improvised explosive devices.
    Curran AM; Prada PA; Furton KG
    Forensic Sci Int; 2010 Jun; 199(1-3):103-8. PubMed ID: 20399050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.