These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36336472)

  • 1. Speed and heading control-based collision avoidance for a ship towing system.
    Zhang L; Liu W; Du Z; Du L; Li X
    ISA Trans; 2023 Apr; 135():52-65. PubMed ID: 36336472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nautical Collision Avoidance : The Cognitive Challenges of Balancing Safety, Efficiency, and Procedures.
    Wickens CD; Williams A; Clegg BA; Smith CAP
    Hum Factors; 2020 Dec; 62(8):1304-1321. PubMed ID: 31532229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel model predictive artificial potential field based ship motion planning method considering COLREGs for complex encounter scenarios.
    He Z; Chu X; Liu C; Wu W
    ISA Trans; 2023 Mar; 134():58-73. PubMed ID: 36150903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on ship collision conflict prediction in the Taiwan Strait using the EMD-based LSSVM method.
    Chai T; Xue H
    PLoS One; 2021; 16(5):e0250948. PubMed ID: 33970943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Real-Time Collision Avoidance Framework of MASS Based on B-Spline and Optimal Decoupling Control.
    Zhang X; Wang C; Chui KT; Liu RW
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Ship Control and Collision Avoidance Using MPC and RBF-Based Trajectory Predictions.
    Papadimitrakis M; Stogiannos M; Sarimveis H; Alexandridis A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A machine vision method for the evaluation of ship-to-ship collision risk.
    Jiang Z; Zhang L; Li W
    Heliyon; 2024 Feb; 10(3):e25105. PubMed ID: 38317916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beam Search Algorithm for Ship Anti-Collision Trajectory Planning.
    Karbowska-Chilinska J; Koszelew J; Ostrowski K; Kuczynski P; Kulbiej E; Wolejsza P
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ship collision risk assessment for the Singapore Strait.
    Qu X; Meng Q; Suyi L
    Accid Anal Prev; 2011 Nov; 43(6):2030-2036. PubMed ID: 21819832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Output-Feedback Cooperative Formation Maneuvering of Autonomous Surface Vehicles With Connectivity Preservation and Collision Avoidance.
    Peng Z; Wang D; Li T; Han M
    IEEE Trans Cybern; 2020 Jun; 50(6):2527-2535. PubMed ID: 31180878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and numerical study of ship-to-ship interactions in overtaking manoeuvres.
    Yu D; Wang L; Yeung RW
    Proc Math Phys Eng Sci; 2019 May; 475(2225):20180748. PubMed ID: 31236044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probabilistic model for accidental cargo oil outflow from product tankers in a ship-ship collision.
    Goerlandt F; Montewka J
    Mar Pollut Bull; 2014 Feb; 79(1-2):130-44. PubMed ID: 24462237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method.
    Zhang W; Wei S; Teng Y; Zhang J; Wang X; Yan Z
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collision-free automatic berthing of maritime autonomous surface ships via safety-certified active disturbance rejection control.
    Liu H; Peng Z; Gu N; Wang H; Liu L; Wang D
    ISA Trans; 2024 May; 148():24-31. PubMed ID: 38514286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time collision avoidance planning for unmanned surface vessels based on field theory.
    Li Y; Zheng J
    ISA Trans; 2020 Nov; 106():233-242. PubMed ID: 32693953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive demands of collision avoidance in simulated ship control.
    Hockey GR; Healey A; Crawshaw M; Wastell DG; Sauer J
    Hum Factors; 2003; 45(2):252-65. PubMed ID: 14529197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Application of Automatic Identification System Information and PSO-LSTM Neural Network in CRI Prediction.
    Zhou W; Li Y; Xiao Y; Zheng J
    Comput Intell Neurosci; 2022; 2022():8699322. PubMed ID: 35371225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Writing while walking: The impact of cognitive-motor multi-tasking on collision avoidance in human locomotion.
    Orschiedt J; Schmickler J; Nußer V; Fischer T; Hermsdörfer J; Krüger M
    Hum Mov Sci; 2023 Apr; 88():103064. PubMed ID: 36706577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive collision avoidance strategy for autonomous vehicle under various road friction and speed.
    Wang J; Huang G; Yuan X; Liu Z; Wu X
    ISA Trans; 2023 Dec; 143():131-143. PubMed ID: 37679272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Algorithm of Determining an Anti-Collision Manoeuvre Trajectory Based on the Interpolation of Ship's State Vector.
    Borkowski P; Pietrzykowski Z; Magaj J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.