These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36336780)

  • 21. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment.
    Wilson RM; Tfaily MM; Kolton M; Johnston ER; Petro C; Zalman CA; Hanson PJ; Heyman HM; Kyle JE; Hoyt DW; Eder EK; Purvine SO; Kolka RK; Sebestyen SD; Griffiths NA; Schadt CW; Keller JK; Bridgham SD; Chanton JP; Kostka JE
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vascular plants promote ancient peatland carbon loss with climate warming.
    Walker TN; Garnett MH; Ward SE; Oakley S; Bardgett RD; Ostle NJ
    Glob Chang Biol; 2016 May; 22(5):1880-9. PubMed ID: 26730448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Newly identified sex chromosomes in the Sphagnum (peat moss) genome alter carbon sequestration and ecosystem dynamics.
    Healey AL; Piatkowski B; Lovell JT; Sreedasyam A; Carey SB; Mamidi S; Shu S; Plott C; Jenkins J; Lawrence T; Aguero B; Carrell AA; Nieto-Lugilde M; Talag J; Duffy A; Jawdy S; Carter KR; Boston LB; Jones T; Jaramillo-Chico J; Harkess A; Barry K; Keymanesh K; Bauer D; Grimwood J; Gunter L; Schmutz J; Weston DJ; Shaw AJ
    Nat Plants; 2023 Feb; 9(2):238-254. PubMed ID: 36747050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CO
    Serk H; Nilsson MB; Figueira J; Wieloch T; Schleucher J
    Plant Cell Environ; 2021 Jun; 44(6):1756-1768. PubMed ID: 33751592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog.
    Larmola T; Bubier JL; Kobyljanec C; Basiliko N; Juutinen S; Humphreys E; Preston M; Moore TR
    Glob Chang Biol; 2013 Dec; 19(12):3729-39. PubMed ID: 23868415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of warming and reduced precipitation on morphology and chlorophyll concentration in peat mosses (Sphagnum angustifolium and S. fallax).
    Rastogi A; Antala M; Gąbka M; Rosadziński S; Stróżecki M; Brestic M; Juszczak R
    Sci Rep; 2020 May; 10(1):8592. PubMed ID: 32451474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sphagnum Species Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding Andromeda polifolia along Peatland Microhabitats.
    Chiapusio G; Jassey VEJ; Bellvert F; Comte G; Weston LA; Delarue F; Buttler A; Toussaint ML; Binet P
    J Chem Ecol; 2018 Dec; 44(12):1146-1157. PubMed ID: 30294748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of Sphagnum mosses in the methane cycling of a boreal mire.
    Larmola T; Tuittila ES; Tiirola M; Nykänen H; Martikainen PJ; Yrjälä K; Tuomivirta T; Fritze H
    Ecology; 2010 Aug; 91(8):2356-65. PubMed ID: 20836457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Consistent centennial-scale change in European sub-Arctic peatland vegetation toward Sphagnum dominance-Implications for carbon sink capacity.
    Piilo SR; Väliranta MM; Amesbury MJ; Aquino-López MA; Charman DJ; Gallego-Sala A; Garneau M; Koroleva N; Kärppä M; Laine AM; Sannel ABK; Tuittila ES; Zhang H
    Glob Chang Biol; 2023 Mar; 29(6):1530-1544. PubMed ID: 36495084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shading contributes to
    Norby RJ; Baxter T; Živković T; Weston DJ
    Ecol Evol; 2023 Sep; 13(9):e10542. PubMed ID: 37732286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response of C and N cycles to N fertilization in Sphagnum and Molinia-dominated peat mesocosms.
    Leroy F; Gogo S; Guimbaud C; Francez AJ; Zocatelli R; Défarge C; Bernard-Jannin L; Hu Z; Laggoun-Défarge F
    J Environ Sci (China); 2019 Mar; 77():264-272. PubMed ID: 30573090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced magnitude and shifted seasonality of CO
    Sun B; Yan L; Jiang M; Li X; Han G; Xia J
    Ecology; 2021 Feb; 102(2):e03236. PubMed ID: 33098567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unveiling tipping points in long-term ecological records from Sphagnum-dominated peatlands.
    Lamentowicz M; Gałka M; Marcisz K; Słowiński M; Kajukało-Drygalska K; Dayras MD; Jassey VEJ
    Biol Lett; 2019 Apr; 15(4):20190043. PubMed ID: 30940021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Range change evolution of peat mosses (Sphagnum) within and between climate zones.
    Shaw AJ; Carter BE; Aguero B; da Costa DP; Crowl AA
    Glob Chang Biol; 2019 Jan; 25(1):108-120. PubMed ID: 30346105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming.
    Walker TWN; Gavazov K; Guillaume T; Lambert T; Mariotte P; Routh D; Signarbieux C; Block S; Münkemüller T; Nomoto H; Crowther TW; Richter A; Buttler A; Alexander JM
    Elife; 2022 May; 11():. PubMed ID: 35550673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?
    Nijp JJ; Limpens J; Metselaar K; van der Zee SE; Berendse F; Robroek BJ
    New Phytol; 2014 Jul; 203(1):70-80. PubMed ID: 24689361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental warming alters the community composition, diversity, and N
    Carrell AA; Kolton M; Glass JB; Pelletier DA; Warren MJ; Kostka JE; Iversen CM; Hanson PJ; Weston DJ
    Glob Chang Biol; 2019 Sep; 25(9):2993-3004. PubMed ID: 31148286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peatland plant communities under global change: negative feedback loops counteract shifts in species composition.
    Hedwall PO; Brunet J; Rydin H
    Ecology; 2017 Jan; 98(1):150-161. PubMed ID: 28052390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Sphagnum microbiome: new insights from an ancient plant lineage.
    Kostka JE; Weston DJ; Glass JB; Lilleskov EA; Shaw AJ; Turetsky MR
    New Phytol; 2016 Jul; 211(1):57-64. PubMed ID: 27173909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.