These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36337268)

  • 1. Research on the Behavioral Dynamics Motion Planning Method of the Human-Vehicle Social Force Model.
    Han G; Wu Z; Zhang W; Wang W
    Comput Intell Neurosci; 2022; 2022():3154532. PubMed ID: 36337268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Do Human-Driven Vehicles Avoid Pedestrians in Interactive Environments? A Naturalistic Driving Study.
    Sun S; Zhang Z; Zhang Z; Deng P; Tian K; Wei C
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Social Force Model-Based Safety Evaluation of Intersections in Arterials Considering the Pedestrian Yield Rule.
    Yao J; Li Y; He J
    Int J Environ Res Public Health; 2021 Nov; 18(23):. PubMed ID: 34886182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overestimated time-to-collision for quiet vehicles: Evidence from a study using a novel audiovisual virtual-reality system for traffic scenarios.
    Oberfeld D; Wessels M; Büttner D
    Accid Anal Prev; 2022 Sep; 175():106778. PubMed ID: 35878469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling pedestrian gap crossing index under mixed traffic condition.
    Naser MM; Zulkiple A; Al Bargi WA; Khalifa NA; Daniel BD
    J Safety Res; 2017 Dec; 63():91-98. PubMed ID: 29203029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The paradox of pedestrian's risk aversion.
    Hacohen S; Shoval S; Shvalb N
    Accid Anal Prev; 2020 Jul; 142():105518. PubMed ID: 32416278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Left-turning vehicle-pedestrian conflicts at signalized intersections with traffic lights: Benefit or harm? A two-stage study.
    He YL; Li RT; Li L; Schwebel DC; Huang HL; Yin QY; Hu GQ
    Chin J Traumatol; 2019 Apr; 22(2):63-68. PubMed ID: 30962130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing vehicle-pedestrian interactions: Combining data cube structure and predictive collision risk estimation model.
    Noh B; Park H; Yeo H
    Accid Anal Prev; 2022 Feb; 165():106539. PubMed ID: 34929575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of pedestrian safety at intersections: A theoretical framework based on pedestrian-vehicle interaction patterns.
    Ni Y; Wang M; Sun J; Li K
    Accid Anal Prev; 2016 Nov; 96():118-129. PubMed ID: 27521905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lane-based Distance-Velocity model for evaluating pedestrian-vehicle interaction at non-signalized locations.
    Chen W; Wang T; Wang Y; Li Q; Xu Y; Niu Y
    Accid Anal Prev; 2022 Oct; 176():106810. PubMed ID: 36049285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the experience in the pedestrian's interaction with an autonomous vehicle: An ergonomic comparison of external HMI.
    Métayer N; Coeugnet S
    Appl Ergon; 2021 Oct; 96():103478. PubMed ID: 34116413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can automated driving prevent crashes with distracted Pedestrians? An exploration of motion planning at unsignalized Mid-block crosswalks.
    Zhu H; Han T; Alhajyaseen WKM; Iryo-Asano M; Nakamura H
    Accid Anal Prev; 2022 Aug; 173():106711. PubMed ID: 35598396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Who goes first? A distributed simulator study of vehicle-pedestrian interaction.
    Kalantari AH; Yang Y; Garcia de Pedro J; Lee YM; Horrobin A; Solernou A; Holmes C; Merat N; Markkula G
    Accid Anal Prev; 2023 Jun; 186():107050. PubMed ID: 37023651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Pedestrian Street-Crossing Decision-Making Based on Vehicle Deceleration-Safety Gap.
    Zhang H; Guo Y; Chen Y; Sun Q; Wang C
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33321945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of automated emergency braking system's avoidance of pedestrian crashes at intersections under occluded conditions within a virtual simulator.
    Abdel-Aty M; Cai Q; Wu Y; Zheng O
    Accid Anal Prev; 2022 Oct; 176():106797. PubMed ID: 35964393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do drivers overtake pedestrians? Evidence from field test and naturalistic driving data.
    Rasch A; Panero G; Boda CN; Dozza M
    Accid Anal Prev; 2020 May; 139():105494. PubMed ID: 32203729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosswalk markings and the risk of pedestrian-motor vehicle collisions in older pedestrians.
    Koepsell T; McCloskey L; Wolf M; Moudon AV; Buchner D; Kraus J; Patterson M
    JAMA; 2002 Nov; 288(17):2136-43. PubMed ID: 12413373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual information of vehicle velocity acquired by pedestrians involved in road crossing accidents.
    Yokoya Y; Soma H
    Accid Anal Prev; 2021 Mar; 151():105912. PubMed ID: 33352523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding complex traffic road scenes: The case of child-pedestrians' hazard perception.
    Meir A; Oron-Gilad T
    J Safety Res; 2020 Feb; 72():111-126. PubMed ID: 32199554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the relevance of traffic enforcement cameras on the severity of vehicle-pedestrian collisions in an urban environment with machine learning models.
    Pineda-Jaramillo J; Barrera-Jiménez H; Mesa-Arango R
    J Safety Res; 2022 Jun; 81():225-238. PubMed ID: 35589294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.