BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 3633744)

  • 1. Spectrin, red cell shape and deformability. II. The antagonistic action of spectrin and sialic acid residues in determining membrane curvature in genetic spectrin deficiency in mice.
    Schmid-Schönbein H; Heidtmann H; Grebe R
    Blut; 1986 Mar; 52(3):149-64. PubMed ID: 3633744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrin, red cell shape and deformability. I. Membrane curvature in genetic spectrin deficiency.
    Schmid-Schönbein H; Heidtmann H; Grebe R
    Blut; 1986 Mar; 52(3):131-47. PubMed ID: 3633743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis.
    Waugh RE; Agre P
    J Clin Invest; 1988 Jan; 81(1):133-41. PubMed ID: 3335631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of red cell surface charge on red cell membrane curvature.
    Grebe R; Wolff H; Schmid-Schönbein H
    Pflugers Arch; 1988 Nov; 413(1):77-82. PubMed ID: 3217228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired echinocytic transformation of ankyrin- and spectrin-deficient erythrocytes in mice.
    Reinhart WH; Sung LP; Sung KL; Bernstein SE; Chien S
    Am J Hematol; 1988 Dec; 29(4):195-200. PubMed ID: 2973228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible roles for the membrane cytoskeleton in regulating red cell stability and deformability.
    Shohet SB
    Scand J Clin Lab Invest Suppl; 1981; 156():123-30. PubMed ID: 6459641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and sedimentation of mixtures of erythrocytes with different properties.
    Suzuki Y; Tateishi N; Cicha I; Maeda N
    Clin Hemorheol Microcirc; 2001; 25(3-4):105-17. PubMed ID: 11847413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of spectrin-deficient, spherocytic mouse erythrocyte membranes.
    Shohet SB
    J Clin Invest; 1979 Aug; 64(2):483-94. PubMed ID: 379045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of the permanent deformation of red blood cell membranes on spectrin dimer-tetramer equilibrium: implication for permanent membrane deformation of irreversibly sickled cells.
    Liu SC; Derick LH; Palek J
    Blood; 1993 Jan; 81(2):522-8. PubMed ID: 8422468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of modification of the membranes of intact erythrocytes on the anti-haemolytic action of chlorpromazine.
    Born GV; Housley GM
    Br J Pharmacol; 1983 Jun; 79(2):481-7. PubMed ID: 6652340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of erythrocyte ghost membrane mechanical stability by chlorpromazine.
    Enomoto A; Takakuwa Y; Manno S; Tanaka A; Mohandas N
    Biochim Biophys Acta; 2001 Jun; 1512(2):285-90. PubMed ID: 11406105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity.
    Fischer TM; Haest CW; Stöhr M; Kamp D; Deuticke B
    Biochim Biophys Acta; 1978 Jul; 510(2):270-82. PubMed ID: 667045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of sialic acid in erythrocyte survival.
    Durocher JR; Payne RC; Conrad ME
    Blood; 1975 Jan; 45(1):11-20. PubMed ID: 803103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolytic properties under hydrostatic pressure of neuraminidase- or protease-treated human erythrocytes.
    Yamaguchi T; Matsumoto M; Kimoto E
    J Biochem; 1993 Oct; 114(4):576-81. PubMed ID: 8276771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape changes and deformability in human erythrocyte membranes.
    Schrier SL
    J Lab Clin Med; 1987 Dec; 110(6):791-7. PubMed ID: 3500247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of spectrin organization in red blood cell membranes on cell metabolism: implications for control of red cell shape, deformability, and surface area.
    Palek J; Liu SC
    Semin Hematol; 1979 Jan; 16(1):75-93. PubMed ID: 154737
    [No Abstract]   [Full Text] [Related]  

  • 18. Mammalian alpha I-spectrin is a neofunctionalized polypeptide adapted to small highly deformable erythrocytes.
    Salomao M; An X; Guo X; Gratzer WB; Mohandas N; Baines AJ
    Proc Natl Acad Sci U S A; 2006 Jan; 103(3):643-8. PubMed ID: 16407147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new membrane concept for viscous RBC deformation in shear: spectrin oligomer complexes as a Bingham-fluid in shear and a dense periodic colloidal system in bending.
    Schmid-Schönbein H; Grebe R; Heidtmann H
    Ann N Y Acad Sci; 1983; 416():225-54. PubMed ID: 6375508
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes.
    Snyder LM; Fortier NL; Leb L; McKenney J; Trainor J; Sheerin H; Mohandas N
    Biochim Biophys Acta; 1988 Jan; 937(2):229-40. PubMed ID: 3337802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.