BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 3633744)

  • 21. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemolytic anemias associated with deficient or dysfunctional spectrin.
    Lux SE; Pease B; Tomaselli MB; John KM; Bernstein SE
    Prog Clin Biol Res; 1979; 30():463-9. PubMed ID: 531037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decreased membrane mechanical stability and in vivo loss of surface area reflect spectrin deficiencies in hereditary spherocytosis.
    Chasis JA; Agre P; Mohandas N
    J Clin Invest; 1988 Aug; 82(2):617-23. PubMed ID: 3403720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA
    Methods Enzymol; 1989; 173():3-35. PubMed ID: 2674613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectrin, human erythrocyte shapes, and mechanochemical properties.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Biophys J; 1986 Jan; 49(1):319-27. PubMed ID: 3955175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation.
    Alimohamadi H; Smith AS; Nowak RB; Fowler VM; Rangamani P
    PLoS Comput Biol; 2020 May; 16(5):e1007890. PubMed ID: 32453720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elasticity of the human red blood cell skeleton.
    Lenormand G; Hénon S; Richert A; Siméon J; Gallet F
    Biorheology; 2003; 40(1-3):247-51. PubMed ID: 12454412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane.
    Williamson P; Bateman J; Kozarsky K; Mattocks K; Hermanowicz N; Choe HR; Schlegel RA
    Cell; 1982 Oct; 30(3):725-33. PubMed ID: 7139713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes.
    Pestonjamasp KN; Mehta NG
    Exp Cell Res; 1995 Jul; 219(1):74-81. PubMed ID: 7628552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. What is red cell deformability?
    Schmid-Schönbein H; Gaehtgens P
    Scand J Clin Lab Invest Suppl; 1981; 156():13-26. PubMed ID: 6948373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of an amphipathic drug on the rheological properties of the cell membrane.
    Bazzoni G; Rasia M
    Blood Cells Mol Dis; 1998 Dec; 24(4):552-9. PubMed ID: 9917421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deformational strain energy and erythrocyte shape.
    McMillan DE; Mitchell TP; Utterback NG
    J Biomech; 1986; 19(4):275-86. PubMed ID: 3711126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. αI-spectrin represents evolutionary optimization of spectrin for red blood cell deformability.
    Hale J; An X; Guo X; Gao E; Papoin J; Blanc L; Hillyer CD; Gratzer W; Baines A; Mohandas N
    Biophys J; 2021 Sep; 120(17):3588-3599. PubMed ID: 34352252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Rapid local oscillations of the surface of the human erythrocyte].
    Krol' AIu; Grinfel'dt MG; Smil'giavichius AD; Levin SV
    Tsitologiia; 1989 May; 31(5):563-8. PubMed ID: 2773065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular basis of clinical and morphological heterogeneity in hereditary elliptocytosis (HE) with spectrin alpha I variants.
    Lecomte MC; Garbarz M; Gautero H; Bournier O; Galand C; Boivin P; Dhermy D
    Br J Haematol; 1993 Nov; 85(3):584-95. PubMed ID: 8136282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of pH on elastic deformability of the human erythrocyte membrane.
    Crandall ED; Critz AM; Osher AS; Keljo DJ; Forster RE
    Am J Physiol; 1978 Nov; 235(5):C269-78. PubMed ID: 31792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization.
    Zeman K; Engelhard H; Sackmann E
    Eur Biophys J; 1990; 18(4):203-19. PubMed ID: 2364914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Erythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand-induced association between glycophorin A and skeletal proteins.
    Chasis JA; Mohandas N; Shohet SB
    J Clin Invest; 1985 Jun; 75(6):1919-26. PubMed ID: 4008645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of neuraminidase on rigidity of the red cell membrane.
    Paulitschke M; Preece A; Nash GB
    Biorheology; 1994; 31(6):643-50. PubMed ID: 7696638
    [No Abstract]   [Full Text] [Related]  

  • 40. An assay of malaria parasite invasion into human erythrocytes. The effects of chemical and enzymatic modification of erythrocyte membrane components.
    Breuer WV; Ginsburg H; Cabantchik ZI
    Biochim Biophys Acta; 1983 Jan; 755(2):263-71. PubMed ID: 6338931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.