These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36337980)

  • 1. Solvent effects on the motion of a crown ether/amino rotaxane.
    Wu Z; Wang S; Zhang Z; Zhang Y; Yin Y; Shi H; Jiao S
    RSC Adv; 2022 Oct; 12(47):30495-30500. PubMed ID: 36337980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lubricating role of water in the shuttling of rotaxanes.
    Fu H; Shao X; Chipot C; Cai W
    Chem Sci; 2017 Jul; 8(7):5087-5094. PubMed ID: 28970894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of 2rotaxanes: influence of solvation and cation on co-conformation.
    Fradera X; Márquez M; Smith BD; Orozco M; Luque FJ
    J Org Chem; 2003 Jun; 68(12):4663-73. PubMed ID: 12790569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shuttling dynamics in an acid-base-switchable [2]rotaxane.
    Garaudée S; Silvi S; Venturi M; Credi A; Flood AH; Stoddart JF
    Chemphyschem; 2005 Oct; 6(10):2145-52. PubMed ID: 16208757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Distinction between "Slow" and "Fast" Translational Motion in Degenerate Molecular Shuttles.
    Vukotic VN; Zhu K; Baggi G; Loeb SJ
    Angew Chem Int Ed Engl; 2017 May; 56(22):6136-6141. PubMed ID: 28145633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the rate of shuttling motions in [2]rotaxanes by electrostatic interactions: a cation as solvent-tunable brake.
    Ghosh P; Federwisch G; Kogej M; Schalley CA; Haase D; Saak W; Lützen A; Gschwind RM
    Org Biomol Chem; 2005 Aug; 3(15):2691-700. PubMed ID: 16032347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of axle length on the rate and mechanism of shuttling in rigid H-shaped [2]rotaxanes.
    Gholami G; Zhu K; Baggi G; Schott E; Zarate X; Loeb SJ
    Chem Sci; 2017 Nov; 8(11):7718-7723. PubMed ID: 29568435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A translationally active ligand based on a [2]rotaxane molecular shuttle with a 2,2'-bipyridyl core.
    Dhara A; Dmitrienko A; Hussein RN; Sotomayor A; Wilson BH; Loeb SJ
    Chem Sci; 2023 Jul; 14(26):7215-7220. PubMed ID: 37416700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative conformational study of redox-active [2]rotaxanes, part 2: Switching in flexible and rigid bistable [2]rotaxanes.
    Nikitin K; Lestini E; Stolarczyk JK; Müller-Bunz H; Fitzmaurice D
    Chemistry; 2008; 14(4):1117-28. PubMed ID: 18041797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station.
    Kumpulainen T; Panman MR; Bakker BH; Hilbers M; Woutersen S; Brouwer AM
    J Am Chem Soc; 2019 Dec; 141(48):19118-19129. PubMed ID: 31697078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into directional movement in molecular machines from free-energy calculations.
    Feng H; Fu H; Shao X; Cai W
    Phys Chem Chem Phys; 2020 Apr; 22(15):7888-7893. PubMed ID: 32227040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Five-State Molecular Shuttling of a Pair of [2]Rotaxanes: Distinct Outputs in Response to Acid and Base Stimuli.
    Ueda M; Terazawa S; Deguchi Y; Kimura M; Matsubara N; Miyagawa S; Kawasaki T; Tokunaga Y
    Chem Asian J; 2016 Aug; 11(16):2291-300. PubMed ID: 27355789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Templated conversion of a crown ether-containing macrobicycle into [2]rotaxanes.
    Mahoney JM; Shukla R; Marshall RA; Beatty AM; Zajicek J; Smith BD
    J Org Chem; 2002 Mar; 67(5):1436-40. PubMed ID: 11871870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accordion-Like Motion in Electrochemically Switchable Crown Ether/Ammonium Oligorotaxanes.
    Schröder HV; Stein F; Wollschläger JM; Sobottka S; Gaedke M; Sarkar B; Schalley CA
    Angew Chem Int Ed Engl; 2019 Mar; 58(11):3496-3500. PubMed ID: 30623543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative conformational study of redox-active [2]rotaxanes, part 1: Methodology and application to a model [2]rotaxane.
    Altobello S; Nikitin K; Stolarczyk JK; Lestini E; Fitzmaurice D
    Chemistry; 2008; 14(4):1107-16. PubMed ID: 18000924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle.
    Waelès P; Fournel-Marotte K; Coutrot F
    Chemistry; 2017 Aug; 23(48):11529-11539. PubMed ID: 28594431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [3]rotaxanes composed of two dibenzo-24-crown-8 ether wheels and an azamacrocyclic complex.
    Woźny M; Więckowska A; Trzybiński D; Sutuła S; Domagała S; Woźniak K
    Dalton Trans; 2018 Nov; 47(44):15845-15856. PubMed ID: 30358785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic and Neutral Rotaxanes Having Different Functional Groups in the Axle Molecule and Their Coordination to Pt
    Yu G; Suzaki Y; Osakada K
    Chem Asian J; 2017 Feb; 12(3):372-377. PubMed ID: 27973709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic covalent approach to [2]- and [3]roxtanes by utilizing a reversible thiol-disulfide interchange reaction.
    Furusho Y; Oku T; Hasegawa T; Tsuboi A; Kihara N; Takata T
    Chemistry; 2003 Jun; 9(12):2895-2903. PubMed ID: 12868421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A musclelike [2](2)rotaxane: synthesis, performance, and molecular dynamics simulations.
    Li H; Li X; Wu Y; Agren H; Qu DH
    J Org Chem; 2014 Aug; 79(15):6996-7004. PubMed ID: 25028771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.