BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36338050)

  • 1. Antifungal activity of the volatile organic compounds produced by
    Gao Y; Ren H; He S; Duan S; Xing S; Li X; Huang Q
    Front Microbiol; 2022; 13():1034939. PubMed ID: 36338050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal Activity of Volatile Components from Ceratocystis fimbriata and Its Potential Biocontrol Mechanism on Alternaria alternata in Postharvest Cherry Tomato Fruit.
    Xing S; Gao Y; Li X; Ren H; Gao Y; Yang H; Liu Y; He S; Huang Q
    Microbiol Spectr; 2023 Feb; 11(1):e0271322. PubMed ID: 36625661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal Volatile Organic Compounds from Streptomyces setonii WY228 Control Black Spot Disease of Sweet Potato.
    Gong Y; Liu JQ; Xu MJ; Zhang CM; Gao J; Li CG; Xing K; Qin S
    Appl Environ Microbiol; 2022 Mar; 88(6):e0231721. PubMed ID: 35108080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile Organic Compounds Produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as Biological Fumigants To Control Ceratocystis fimbriata in Postharvest Sweet Potatoes.
    Zhang Y; Li T; Liu Y; Li X; Zhang C; Feng Z; Peng X; Li Z; Qin S; Xing K
    J Agric Food Chem; 2019 Apr; 67(13):3702-3710. PubMed ID: 30860830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Volatile Organic Compounds in Extremophilic Bacteria and Their Effective Use in Biocontrol of Postharvest Fungal Phytopathogens.
    Toral L; Rodríguez M; Martínez-Checa F; Montaño A; Cortés-Delgado A; Smolinska A; Llamas I; Sampedro I
    Front Microbiol; 2021; 12():773092. PubMed ID: 34867910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry.
    Gotor-Vila A; Teixidó N; Di Francesco A; Usall J; Ugolini L; Torres R; Mari M
    Food Microbiol; 2017 Jun; 64():219-225. PubMed ID: 28213029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Rhizospheric Actinomycete
    Li X; Li B; Cai S; Zhang Y; Xu M; Zhang C; Yuan B; Xing K; Qin S
    Microorganisms; 2020 Feb; 8(3):. PubMed ID: 32106520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Volatile Organic Compounds From
    Gao H; Li P; Xu X; Zeng Q; Guan W
    Front Microbiol; 2018; 9():456. PubMed ID: 29593695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Volatile Organic Compounds Produced by
    Wang C; Duan T; Shi L; Zhang X; Fan W; Wang M; Wang J; Ren L; Zhao X; Wang Y
    Plant Dis; 2022 Sep; 106(9):2321-2329. PubMed ID: 35380464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofumigation on Post-Harvest Diseases of Fruits Using a New Volatile-Producing Fungus of Ceratocystis fimbriata.
    Li Q; Wu L; Hao J; Luo L; Cao Y; Li J
    PLoS One; 2015; 10(7):e0132009. PubMed ID: 26147922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal effect of volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 on oxidative stress and mitochondrial dysfunction of Ceratocystis fimbriata.
    Zhang Y; Li T; Xu M; Guo J; Zhang C; Feng Z; Peng X; Li Z; Xing K; Qin S
    Pestic Biochem Physiol; 2021 Mar; 173():104777. PubMed ID: 33771256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile Organic Compounds of
    Zou X; Wei Y; Zhu J; Sun J; Shao X
    Foods; 2023 Sep; 12(19):. PubMed ID: 37835272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal activity of volatile organic compounds from essential oils against the postharvest pathogens
    Álvarez-García S; Moumni M; Romanazzi G
    Front Plant Sci; 2023; 14():1274770. PubMed ID: 37860258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic Effects of Volatiles Produced by
    Xu M; Guo J; Li T; Zhang C; Peng X; Xing K; Qin S
    J Agric Food Chem; 2021 Nov; 69(44):13045-13054. PubMed ID: 34705454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro.
    Yalage Don SM; Schmidtke LM; Gambetta JM; Steel CC
    Sci Rep; 2020 Mar; 10(1):4498. PubMed ID: 32161291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile organic compounds produced by
    Ling L; Luo H; Yang C; Wang Y; Cheng W; Pang M; Jiang K
    Front Microbiol; 2022; 13():987844. PubMed ID: 36090114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit.
    Liu C; Yin X; Wang Q; Peng Y; Ma Y; Liu P; Shi J
    J Sci Food Agric; 2018 Dec; 98(15):5756-5763. PubMed ID: 29756313
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Di Francesco A; Jabeen F; Vall-Llaura N; Moret E; Martini M; Torres R; Ermacora P; Teixidó N
    Front Plant Sci; 2024; 15():1398014. PubMed ID: 38779078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal Effects of Volatiles Produced by
    Zhang D; Yu S; Yang Y; Zhang J; Zhao D; Pan Y; Fan S; Yang Z; Zhu J
    Front Microbiol; 2020; 11():1196. PubMed ID: 32625175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches.
    Garcia-Benitez C; Melgarejo P; De Cal A
    Int J Food Microbiol; 2017 Jan; 241():117-122. PubMed ID: 27768931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.