These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36338603)

  • 21. Design and Evaluation of a Knee Flexion Assistance Exoskeleton for People with Transtibial Amputation.
    Anderson AJ; Hudak YF; Gauthier KA; Muir BC; Aubin PM
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling, design, and optimization of Mindwalker series elastic joint.
    Wang S; Meijneke C; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650381. PubMed ID: 24187200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton.
    Young AJ; Gannon H; Ferris DP
    Front Bioeng Biotechnol; 2017; 5():37. PubMed ID: 28713810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
    Li Z; Ma W; Yin Z; Guo H
    ISA Trans; 2017 Nov; 71(Pt 2):458-466. PubMed ID: 28823408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption.
    Yandell MB; Tacca JR; Zelik KE
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):712-723. PubMed ID: 30872237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of an Unpowered Ankle-Foot Exoskeleton Used for Walking Assistance.
    Liu L; Wei W; Zheng K; Diao Y; Wang Z; Li G; Zhao G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4501-4504. PubMed ID: 34892218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical Effects of Stiffness in Parallel With the Knee Joint During Walking.
    Shamaei K; Cenciarini M; Adams AA; Gregorczyk KN; Schiffman JM; Dollar AM
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2389-401. PubMed ID: 25955513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of passive ankle exoskeletons on neuromuscular function during exaggerated standing sway.
    Farris DJ; Po JCN; Yee J; Williamson JL; Dick TJM
    R Soc Open Sci; 2024 May; 11(5):230590. PubMed ID: 38716327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification.
    Zhang L; Zhang X; Zhu X; Wang R; Gutierrez-Farewik EM
    Front Neurosci; 2023; 17():1254088. PubMed ID: 37712095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.