These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36338821)

  • 1. Compton and proximity imaging of
    Caravaca J; Huh Y; Gullberg GT; Seo Y
    IEEE Trans Radiat Plasma Med Sci; 2022 Nov; 6(8):904-915. PubMed ID: 36338821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Evaluation of a 3-D CZT Imaging Spectrometer for Potential Use in Compton-Enhanced PET Imaging.
    Jin Y; Streicher M; Yang H; Brown S; He Z; Meng LJ
    IEEE Trans Radiat Plasma Med Sci; 2023 Jan; 7(1):18-32. PubMed ID: 38106623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity analysis of the efficiency of Compton camera to the detector parameters using the GEANT4 computer code.
    Niknami M; Hosseini SA; Loushab ME
    Appl Radiat Isot; 2021 Oct; 176():109883. PubMed ID: 34352529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of detector material and radiation source position on Compton camera's ability for multitracer imaging.
    Uche CZ; Round WH; Cree MJ
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):357-64. PubMed ID: 22829298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiopharmaceutical imaging based on 3D-CZT Compton camera with 3D-printed mouse phantom.
    Tian F; Geng C; Yao Z; Wu R; Xu J; Cai F; Tang X
    Phys Med; 2022 Apr; 96():140-148. PubMed ID: 35287101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GEANT4 simulation of the effects of Doppler energy broadening in Compton imaging.
    Uche CZ; Cree MJ; Round WH
    Australas Phys Eng Sci Med; 2011 Sep; 34(3):409-14. PubMed ID: 21556971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Monte Carlo evaluation of three Compton camera absorbers.
    Uche CZ; Round WH; Cree MJ
    Australas Phys Eng Sci Med; 2011 Sep; 34(3):351-60. PubMed ID: 21710232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coded aperture and Compton imaging for the development of
    Frame E; Bobba K; Gunter D; Mihailescu L; Bidkar A; Flavell R; Vetter K
    Med Phys; 2023 Oct; 50(10):6454-6468. PubMed ID: 37672346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical note: Rapid and high-resolution deep learning-based radiopharmaceutical imaging with 3D-CZT Compton camera and sparse projection data.
    Yao Z; Shi C; Tian F; Xiao Y; Geng C; Tang X
    Med Phys; 2022 Nov; 49(11):7336-7346. PubMed ID: 35946492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation studies of a full-ring, CZT SPECT system for whole-body imaging of
    Huh Y; Caravaca J; Kim J; Cui Y; Huang Q; Gullberg G; Seo Y
    Med Phys; 2023 Jun; 50(6):3726-3737. PubMed ID: 36916755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility study on hybrid medical imaging device based on Compton imaging and magnetic resonance imaging.
    Seo H; Lee SH; Jeong JH; Kim CH; Lee JH; Lee CS; Lee JS
    Appl Radiat Isot; 2009; 67(7-8):1412-5. PubMed ID: 19321352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A performance comparison of novel cadmium-zinc-telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation.
    Liu CJ; Cheng JS; Chen YC; Huang YH; Yen RF
    Ann Nucl Med; 2015 May; 29(4):342-50. PubMed ID: 25628019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of a Compton SPECT imager for determining the position and distribution of
    Lee T; Kim M; Lee W; Kim B; Lim I; Song K; Kim J
    Appl Radiat Isot; 2019 Dec; 154():108893. PubMed ID: 31574432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors.
    Peng H; Levin CS
    Phys Med Biol; 2010 May; 55(9):2761-88. PubMed ID: 20400807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Compton image reconstruction method for whole gamma imaging.
    Tashima H; Yoshida E; Wakizaka H; Takahashi M; Nagatsu K; Tsuji AB; Kamada K; Parodi K; Yamaya T
    Phys Med Biol; 2020 Nov; 65(22):225038. PubMed ID: 32937613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a variable-aperture full-ring SPECT system using large-area pixelated CZT modules: A simulation study for brain SPECT applications.
    Huh Y; Yang J; Dim OU; Cui Y; Tao W; Huang Q; Gullberg GT; Seo Y
    Med Phys; 2021 May; 48(5):2301-2314. PubMed ID: 33704793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scatter and crosstalk corrections for (99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators.
    Fan P; Hutton BF; Holstensson M; Ljungberg M; Pretorius PH; Prasad R; Ma T; Liu Y; Wang S; Thorn SL; Stacy MR; Sinusas AJ; Liu C
    Med Phys; 2015 Dec; 42(12):6895-911. PubMed ID: 26632046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compton imaging for medical applications.
    Tashima H; Yamaya T
    Radiol Phys Technol; 2022 Sep; 15(3):187-205. PubMed ID: 35867197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments.
    Pourmoghaddas A; Wells RG
    Med Phys; 2016 Jan; 43(1):44. PubMed ID: 26745898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras.
    Mackin D; Polf J; Peterson S; Beddar S
    Med Phys; 2013 Jan; 40(1):012402. PubMed ID: 23298111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.