These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36338899)
1. Probabilistic prediction of rock avalanche runout using a numerical model. Aaron J; McDougall S; Kowalski J; Mitchell A; Nolde N Landslides; 2022; 19(12):2853-2869. PubMed ID: 36338899 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Uncertainty and Sensitivity in Tailings Dam Breach-Runout Numerical Modelling. Ghahramani N; Adria DAM; Rana NM; Llano-Serna M; McDougall S; Evans SG; Take WA Mine Water Environ; 2024; 43(1):87-103. PubMed ID: 38680166 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches. Li X; Sovilla B; Jiang C; Gaume J Landslides; 2021; 18(10):3393-3406. PubMed ID: 34776814 [TBL] [Abstract][Full Text] [Related]
4. Comparison of two 2-D numerical models for snow avalanche simulation. Martini M; Baggio T; D'Agostino V Sci Total Environ; 2023 Oct; 896():165221. PubMed ID: 37392885 [TBL] [Abstract][Full Text] [Related]
5. Modelling the dynamics of a large rock landslide in the Dolomites (eastern Italian Alps) using multi-temporal DEMs. Gatter R; Cavalli M; Crema S; Bossi G PeerJ; 2018; 6():e5903. PubMed ID: 30425893 [TBL] [Abstract][Full Text] [Related]
6. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): Landform interpretation and kinematics of rapid mass movement. Ostermann M; Sanders D; Ivy-Ochs S; Alfimov V; Rockenschaub M; Römer A Geomorphology (Amst); 2012 Oct; 171-172(100):83-93. PubMed ID: 24966447 [TBL] [Abstract][Full Text] [Related]
7. The influence of erosion on the dynamic process of landslide in Xinmo Village, Maoxian. Wang ZF; Zhang XS; Shi FG; Tian Y; Wu MT Sci Rep; 2024 Sep; 14(1):21422. PubMed ID: 39271715 [TBL] [Abstract][Full Text] [Related]
8. A benchmarking study of four numerical runout models for the simulation of tailings flows. Ghahramani N; Chen HJ; Clohan D; Liu S; Llano-Serna M; Rana NM; McDougall S; Evans SG; Take WA Sci Total Environ; 2022 Jun; 827():154245. PubMed ID: 35257777 [TBL] [Abstract][Full Text] [Related]
9. The relevance of rock shape over mass-implications for rockfall hazard assessments. Caviezel A; Ringenbach A; Demmel SE; Dinneen CE; Krebs N; Bühler Y; Christen M; Meyrat G; Stoffel A; Hafner E; Eberhard LA; Rickenbach DV; Simmler K; Mayer P; Niklaus PS; Birchler T; Aebi T; Cavigelli L; Schaffner M; Rickli S; Schnetzler C; Magno M; Benini L; Bartelt P Nat Commun; 2021 Sep; 12(1):5546. PubMed ID: 34545090 [TBL] [Abstract][Full Text] [Related]
10. Identification of a Quaternary rock avalanche deposit (Central Apennines, Italy): Significance for recognition of fossil catastrophic mass-wasting. Sanders D; Dendorfer T; Edwards RL; Moseley GE; Ortner H; Steidle S Sedimentology; 2022 Aug; 69(5):2099-2130. PubMed ID: 36248773 [TBL] [Abstract][Full Text] [Related]
11. Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting. Murad A; Kraemer FA; Bach K; Taylor G Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34884011 [TBL] [Abstract][Full Text] [Related]
12. Calibration and quantifying uncertainty of daily water quality forecasts for large lakes with a Bayesian joint probability modelling approach. Peng Z; Hu Y; Liu G; Hu W; Zhang H; Gao R Water Res; 2020 Oct; 185():116162. PubMed ID: 32810742 [TBL] [Abstract][Full Text] [Related]
13. Climate warming enhances snow avalanche risk in the Western Himalayas. Ballesteros-Cánovas JA; Trappmann D; Madrigal-González J; Eckert N; Stoffel M Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3410-3415. PubMed ID: 29535224 [TBL] [Abstract][Full Text] [Related]
14. Sources of uncertainty in pesticide fate modelling. Dubus IG; Brown CD; Beulke S Sci Total Environ; 2003 Dec; 317(1-3):53-72. PubMed ID: 14630412 [TBL] [Abstract][Full Text] [Related]
15. Imminent threat of rock-ice avalanches in High Mountain Asia. Fan X; Yunus AP; Yang YH; Siva Subramanian S; Zou C; Dai L; Dou X; Narayana AC; Avtar R; Xu Q; Huang R Sci Total Environ; 2022 Aug; 836():155380. PubMed ID: 35489509 [TBL] [Abstract][Full Text] [Related]
16. Simulation of Glacial Avalanche Hazards in Shyok Basin of Upper Indus. Gilany N; Iqbal J Sci Rep; 2019 Dec; 9(1):20077. PubMed ID: 31882757 [TBL] [Abstract][Full Text] [Related]
17. Towards a holistic paradigm for long-term snow avalanche risk assessment and mitigation. Eckert N; Giacona F Ambio; 2023 Apr; 52(4):711-732. PubMed ID: 36324022 [TBL] [Abstract][Full Text] [Related]
18. A Risk Assessment Perspective of Current Practice in Characterizing Uncertainties in QSAR Regression Predictions. Sahlin U; Filipsson M; Öberg T Mol Inform; 2011 Jun; 30(6-7):551-64. PubMed ID: 27467156 [TBL] [Abstract][Full Text] [Related]
19. Calibration of the Dermal Advanced REACH Tool (dART) Mechanistic Model. McNally K; Gorce JP; Goede HA; Schinkel J; Warren N Ann Work Expo Health; 2019 Jul; 63(6):637-650. PubMed ID: 31095277 [TBL] [Abstract][Full Text] [Related]
20. Correlations between avalanches in the depinning dynamics of elastic interfaces. Le Doussal P; Thiery T Phys Rev E; 2020 Mar; 101(3-1):032108. PubMed ID: 32289984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]