These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 36339714)
1. Development of machine learning models for the screening of potential HSP90 inhibitors. Khan MI; Park T; Imran MA; Gowda Saralamma VV; Lee DC; Choi J; Baig MH; Dong JJ Front Mol Biosci; 2022; 9():967510. PubMed ID: 36339714 [TBL] [Abstract][Full Text] [Related]
2. E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells. Samant RS; Clarke PA; Workman P Proc Natl Acad Sci U S A; 2014 May; 111(18):6834-9. PubMed ID: 24760825 [TBL] [Abstract][Full Text] [Related]
3. Natural compounds as potential Hsp90 inhibitors for breast cancer-Pharmacophore guided molecular modelling studies. Rampogu S; Parate S; Parameswaran S; Park C; Baek A; Son M; Park Y; Park SJ; Lee KW Comput Biol Chem; 2019 Dec; 83():107113. PubMed ID: 31493740 [TBL] [Abstract][Full Text] [Related]
4. HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Schulz R; Streller F; Scheel AH; Rüschoff J; Reinert MC; Dobbelstein M; Marchenko ND; Moll UM Cell Death Dis; 2014 Jan; 5(1):e980. PubMed ID: 24384723 [TBL] [Abstract][Full Text] [Related]
6. Docosahexaenoic Acid-mediated Inhibition of Heat Shock Protein 90-p23 Chaperone Complex and Downstream Client Proteins in Lung and Breast Cancer. Mouradian M; Ma IV; Vicente ED; Kikawa KD; Pardini RS Nutr Cancer; 2017 Jan; 69(1):92-104. PubMed ID: 27880046 [TBL] [Abstract][Full Text] [Related]
7. Hsp90: an emerging target for breast cancer therapy. Beliakoff J; Whitesell L Anticancer Drugs; 2004 Aug; 15(7):651-62. PubMed ID: 15269596 [TBL] [Abstract][Full Text] [Related]
8. Targeting the Hsp90-Cdc37-client protein interaction to disrupt Hsp90 chaperone machinery. Li T; Jiang HL; Tong YG; Lu JJ J Hematol Oncol; 2018 Apr; 11(1):59. PubMed ID: 29699578 [TBL] [Abstract][Full Text] [Related]
9. Geldanamycin and its anti-cancer activities. Fukuyo Y; Hunt CR; Horikoshi N Cancer Lett; 2010 Apr; 290(1):24-35. PubMed ID: 19850405 [TBL] [Abstract][Full Text] [Related]
10. Reinventing Hsp90 Inhibitors: Blocking C-Terminal Binding Events to Hsp90 by Using Dimerized Inhibitors. Koay YC; Wahyudi H; McAlpine SR Chemistry; 2016 Dec; 22(51):18572-18582. PubMed ID: 27859703 [TBL] [Abstract][Full Text] [Related]
12. Overcoming acquired resistance to HSP90 inhibition by targeting JAK-STAT signalling in triple-negative breast cancer. Mumin NH; Drobnitzky N; Patel A; Lourenco LM; Cahill FF; Jiang Y; Kong A; Ryan AJ BMC Cancer; 2019 Jan; 19(1):102. PubMed ID: 30678647 [TBL] [Abstract][Full Text] [Related]
13. Disrupting progression of the yeast Hsp90 folding pathway at different transition points results in client-specific maturation defects. Hohrman K; Gonçalves D; Morano KA; Johnson JL Genetics; 2021 Mar; 217(3):. PubMed ID: 33789348 [TBL] [Abstract][Full Text] [Related]
14. Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Hong DS; Banerji U; Tavana B; George GC; Aaron J; Kurzrock R Cancer Treat Rev; 2013 Jun; 39(4):375-87. PubMed ID: 23199899 [TBL] [Abstract][Full Text] [Related]
15. Drug-mediated targeted disruption of multiple protein activities through functional inhibition of the Hsp90 chaperone complex. Stravopodis DJ; Margaritis LH; Voutsinas GE Curr Med Chem; 2007; 14(29):3122-38. PubMed ID: 18220746 [TBL] [Abstract][Full Text] [Related]
17. Virtual screening based identification of miltefosine and octenidine as inhibitors of heat shock protein 90. Li L; Yang M; Li C; Liu Y Naunyn Schmiedebergs Arch Pharmacol; 2021 Nov; 394(11):2223-2232. PubMed ID: 34406420 [TBL] [Abstract][Full Text] [Related]
18. ATP-Driven Nonequilibrium Activation of Kinase Clients by the Molecular Chaperone Hsp90. Xu H Biophys J; 2020 Oct; 119(8):1538-1549. PubMed ID: 33038305 [TBL] [Abstract][Full Text] [Related]
19. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32. Chatterjee BK; Jayaraj A; Kumar V; Blagg B; Davis RE; Jayaram B; Deep S; Chaudhuri TK J Biol Chem; 2019 Apr; 294(16):6450-6467. PubMed ID: 30792306 [TBL] [Abstract][Full Text] [Related]