These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36340085)

  • 1. Wall Effects for Spheroidal Particle in Confined Bingham Plastic Fluids.
    Dang J; Duan X; Tian S
    ACS Omega; 2022 Nov; 7(43):38717-38727. PubMed ID: 36340085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady Displacement of Long Gas Bubbles in Channels and Tubes Filled by a Bingham Fluid.
    Zamankhan P; Takayama S; Grotberg JB
    Phys Rev Fluids; 2018 Jan; 3(1):. PubMed ID: 30740583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drag force on a rigid spheroidal particle in a cylinder filled with Carreau fluid.
    Hsu JP; Hsieh YH; Tseng S
    J Colloid Interface Sci; 2005 Apr; 284(2):729-41. PubMed ID: 15780316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid dynamical analysis of a particle with large vapor transport in poiseuille flow.
    Asavatesanupap C; Sadhal SS
    Ann N Y Acad Sci; 2009 Apr; 1161():268-76. PubMed ID: 19426325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid.
    Chokshi P; Bhade P; Kumaran V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023007. PubMed ID: 25768597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of expansion and contraction for sudden plastic flow of Bingham cement grout and Newtonian fluids in a rectangular duct, using the lattice Boltzmann method.
    Velázquez Ortega JL; Vergara AIG
    Heliyon; 2024 Mar; 10(6):e28151. PubMed ID: 38524614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids.
    Fraggedakis D; Dimakopoulos Y; Tsamopoulos J
    Soft Matter; 2016 Jun; 12(24):5378-401. PubMed ID: 27223648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turbulent Drag Reduction by a Near Wall Surface Tension Active Interface.
    Ahmadi S; Roccon A; Zonta F; Soldati A
    Flow Turbul Combust; 2018; 100(4):979-993. PubMed ID: 30069147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental investigation and flow-system simulation about the influencing of silica-magnesium oxide nano-mixture on enhancing the rheological properties of Iraqi crude oil.
    Alhamd SJ; Manteghian M; Dehaghani AHS; Rashid FL
    Sci Rep; 2024 Mar; 14(1):6148. PubMed ID: 38480813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sedimentation of a cylindrical particle in a Carreau fluid.
    Hsu JP; Shie CF; Tseng S
    J Colloid Interface Sci; 2005 Jun; 286(1):392-9. PubMed ID: 15848443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow.
    Rosén T; Do-Quang M; Aidun CK; Lundell F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053017. PubMed ID: 26066258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact regularized point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime.
    Battista F; Mollicone JP; Gualtieri P; Messina R; Casciola CM
    J Fluid Mech; 2019 Nov; 878():420-444. PubMed ID: 32879533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drag force on a porous, non-homogeneous spheroidal floc in a uniform flow field.
    Hsu JP; Hsieh YH
    J Colloid Interface Sci; 2003 Mar; 259(2):301-8. PubMed ID: 16256510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large particles increase viscosity and yield stress of pig cecal contents without changing basic viscoelastic properties.
    Takahashi T; Sakata T
    J Nutr; 2002 May; 132(5):1026-30. PubMed ID: 11983832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Varying Viscosity on Two-Fluid Model of Blood Flow through Constricted Blood Vessels: A Comparative Study.
    Tiwari A; Chauhan SS
    Cardiovasc Eng Technol; 2019 Mar; 10(1):155-172. PubMed ID: 30302623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Analysis of Fluid Forces on an Obstacle in a Channel Driven Cavity: Viscoplastic Material Based Characteristics.
    Mahmood R; Hussain Majeed A; Ain QU; Awrejcewicz J; Siddique I; Shahzad H
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoplastic Couette Flow in the Presence of Wall Slip with Non-Zero Slip Yield Stress.
    Damianou Y; Panaseti P; Georgiou GC
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube.
    Tripathi D; Anwar Bég O
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1648-57. PubMed ID: 25059738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.