These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36340187)

  • 1. Prediction of Microstructure for AISI316L Steel from Numerical Simulation of Laser Powder Bed Fusion.
    Abrami MB; Tocci M; Obeidi MA; Brabazon D; Pola A
    Met Mater Int; 2022; 28(11):2735-2746. PubMed ID: 36340187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and Solute Segregation around the Melt-Pool Boundary of Orientation-Controlled 316L Austenitic Stainless Steel Produced by Laser Powder Bed Fusion.
    Sato K; Takagi S; Ichikawa S; Ishimoto T; Nakano T
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L.
    Kurdi A; Tabbakh T; Basak AK
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Physics Modeling of Melting-Solidification Characteristics in Laser Powder Bed Fusion Process of 316L Stainless Steel.
    Shan X; Pan Z; Gao M; Han L; Choi JP; Zhang H
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties.
    Großwendt F; Becker L; Röttger A; Chehreh AB; Strauch AL; Uhlenwinkel V; Lentz J; Walther F; Fechte-Heinen R; Weber S; Theisen W
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Hatch Spacing on Melt Pool and As-built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches.
    Dong Z; Liu Y; Wen W; Ge J; Liang J
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30586893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Thermal Treatment on Corrosion Behavior of AISI 316L Stainless Steel Manufactured by Laser Powder Bed Fusion.
    Andreatta F; Lanzutti A; Revilla RI; Vaglio E; Totis G; Sortino M; de Graeve I; Fedrizzi L
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing.
    Zhang Z; Zhang T; Sun C; Karna S; Yuan L
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 316L Stainless Steel Powders for Additive Manufacturing: Relationships of Powder Rheology, Size, Size Distribution to Part Properties.
    Groarke R; Danilenkoff C; Karam S; McCarthy E; Michel B; Mussatto A; Sloane J; O' Neill A; Raghavendra R; Brabazon D
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion.
    Arısoy YM; Criales LE; Özel T; Lane B; Moylan S; Donmez A
    Int J Adv Manuf Technol; 2017; 90(5-8):. PubMed ID: 37056292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the Properties of 316L Stainless Steel after AM and Heat Treatment.
    Petroušek P; Kvačkaj T; Bidulská J; Bidulský R; Grande MA; Manfredi D; Weiss KP; Kočiško R; Lupták M; Pokorný I
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Simulation in the Melt Pool Evolution of Laser Powder Bed Fusion Process for Ti6Al4V.
    Xu Y; Zhang D; Deng J; Wu X; Li L; Xie Y; Poprawe R; Schleifenbaum JH; Ziegler S
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Powder plasma spheroidization treatment and the characterization of microstructure and mechanical properties of SS 316L powder and L-PBF builds.
    Getto E; Santucci RJ; Gibbs J; Link R; Retzlaff E; Baker B; Koul M; Croom B; Montalbano T; Storck S; Cimpoiasu E; Farnan E
    Heliyon; 2023 Jun; 9(6):e16583. PubMed ID: 37260881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion.
    Baldi N; Giorgetti A; Palladino M; Giovannetti I; Arcidiacono G; Citti P
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength Enhancement of Laser Powder Bed Fusion 316L by Addition of Nano TiC Particles.
    Liu Y; Xie D; Lv F
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the Cooling Behavior of Melt Pools in L-PBF by Pyrometry.
    Pfaff A; Schäffer S; Jäcklein M; Balle F
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual Stress Formation Mechanisms in Laser Powder Bed Fusion-A Numerical Evaluation.
    Kaess M; Werz M; Weihe S
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response Surface Methodology (RSM) Approach for Optimizing the Processing Parameters of 316L SS in Directed Energy Deposition.
    Amar E; Popov V; Sharma VM; Andreev Batat S; Halperin D; Eliaz N
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38067997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents.
    Wiesent L; Schultheiß U; Lulla P; Noster U; Schratzenstaller T; Schmid C; Nonn A; Spear A
    PLoS One; 2020; 15(12):e0244463. PubMed ID: 33373392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.