These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 36340187)
21. Measuring the Cooling Behavior of Melt Pools in L-PBF by Pyrometry. Pfaff A; Schäffer S; Jäcklein M; Balle F Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241278 [TBL] [Abstract][Full Text] [Related]
22. Residual Stress Formation Mechanisms in Laser Powder Bed Fusion-A Numerical Evaluation. Kaess M; Werz M; Weihe S Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984200 [TBL] [Abstract][Full Text] [Related]
23. Response Surface Methodology (RSM) Approach for Optimizing the Processing Parameters of 316L SS in Directed Energy Deposition. Amar E; Popov V; Sharma VM; Andreev Batat S; Halperin D; Eliaz N Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38067997 [TBL] [Abstract][Full Text] [Related]
24. Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents. Wiesent L; Schultheiß U; Lulla P; Noster U; Schratzenstaller T; Schmid C; Nonn A; Spear A PLoS One; 2020; 15(12):e0244463. PubMed ID: 33373392 [TBL] [Abstract][Full Text] [Related]
25. Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process. Kaščák Ľ; Varga J; Bidulská J; Bidulský R Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138795 [TBL] [Abstract][Full Text] [Related]
26. Dimension Prediction and Microstructure Study of Wire Arc Additive Manufactured 316L Stainless Steel Based on Artificial Neural Network and Finite Element Simulation. Di Y; Zheng Z; Pang S; Li J; Zhong Y Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793188 [TBL] [Abstract][Full Text] [Related]
27. Three-Dimensional Numerical Simulation of Grain Growth during Selective Laser Melting of 316L Stainless Steel. Xu F; Xiong F; Li MJ; Lian Y Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234136 [TBL] [Abstract][Full Text] [Related]
28. Effect of Microstructure and Dislocation Density on Material Removal and Surface Finish of Laser Powder Bed Fusion 316L Stainless Steel Subject to a Self-Terminating Etching Process. Prochaska S; Walker M; Hildreth O 3D Print Addit Manuf; 2023 Jun; 10(3):373-382. PubMed ID: 37346184 [TBL] [Abstract][Full Text] [Related]
29. Effect of processing parameters on the microstructure of laser-clad Stellite 6 on the X19CrMoNbVN11-1 stainless-steel substrate. Soltanipour A; Heydarzadeh Sohi M; Shoja-Razavi R; Barekat M; Erfanmanes M Heliyon; 2024 May; 10(9):e30176. PubMed ID: 38765171 [TBL] [Abstract][Full Text] [Related]
30. A Review of Computational Approaches to the Microstructure-Informed Mechanical Modelling of Metals Produced by Powder Bed Fusion Additive Manufacturing. Zinovieva O; Romanova V; Dymnich E; Zinoviev A; Balokhonov R Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834596 [TBL] [Abstract][Full Text] [Related]
31. On the Biomechanical Performances of Duplex Stainless Steel Graded Scaffolds Produced by Laser Powder Bed Fusion for Tissue Engineering Applications. Gatto ML; Cerqueni G; Groppo R; Tognoli E; Santoni A; Cabibbo M; Mattioli-Belmonte M; Mengucci P J Funct Biomater; 2023 Sep; 14(10):. PubMed ID: 37888154 [TBL] [Abstract][Full Text] [Related]
32. Microstructure Evolution, Mechanical Properties and Deformation Behavior of an Additively Manufactured Maraging Steel. Chadha K; Tian Y; Bocher P; Spray JG; Aranas C Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455718 [TBL] [Abstract][Full Text] [Related]
33. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM). Wang Z; Yang S; Huang Y; Fan C; Peng Z; Gao Z Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947139 [TBL] [Abstract][Full Text] [Related]
34. Improved Process Efficiency in Laser-Based Powder Bed Fusion of Nanoparticle Coated Maraging Tool Steel Powder. Pannitz O; Großwendt F; Lüddecke A; Kwade A; Röttger A; Sehrt JT Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206450 [TBL] [Abstract][Full Text] [Related]
35. Dual-Laser PBF-LB Processing of a High-Performance Maraging Tool Steel FeNiCoMoVTiAl. Graf G; Nouri N; Dietrich S; Zanger F; Schulze V Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361445 [TBL] [Abstract][Full Text] [Related]
36. Numerical Prediction of Microstructure Evolution of Small-Diameter Stainless Steel Balls during Cold Skew Rolling. Zhou J; Liu S; Wang B; Xu H Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110082 [TBL] [Abstract][Full Text] [Related]
37. Nanoparticle Tracing during Laser Powder Bed Fusion of Oxide Dispersion Strengthened Steels. Yang Y; Doñate-Buendía C; Oyedeji TD; Gökce B; Xu BX Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206612 [TBL] [Abstract][Full Text] [Related]
38. Base Plate Preheating Effect on Microstructure of 316L Stainless Steel Single Track Deposition by Directed Energy Deposition. Kiran A; Koukolíková M; Vavřík J; Urbánek M; Džugan J Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576351 [TBL] [Abstract][Full Text] [Related]
39. An Overview of Additive Manufacturing Technologies-A Review to Technical Synthesis in Numerical Study of Selective Laser Melting. Razavykia A; Brusa E; Delprete C; Yavari R Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899260 [TBL] [Abstract][Full Text] [Related]
40. In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis. Wang R; Garcia D; Kamath RR; Dou C; Ma X; Shen B; Choo H; Fezzaa K; Yu HZ; Kong ZJ Sci Rep; 2022 Aug; 12(1):13716. PubMed ID: 35962031 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]