BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36340393)

  • 1. Integrated analysis of carotenoid metabolites and transcriptome identifies key genes controlling carotenoid compositions and content in sweetpotato tuberous roots (
    Jia R; Zhang R; Gangurde SS; Tang C; Jiang B; Li G; Wang Z
    Front Plant Sci; 2022; 13():993682. PubMed ID: 36340393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated metabolic and transcriptional analysis reveals the role of carotenoid cleavage dioxygenase 4 (IbCCD4) in carotenoid accumulation in sweetpotato tuberous roots.
    Zhang J; He L; Dong J; Zhao C; Wang Y; Tang R; Wang W; Ji Z; Cao Q; Xie H; Wu Z; Li R; Yuan L; Jia X
    Biotechnol Biofuels Bioprod; 2023 Mar; 16(1):45. PubMed ID: 36918944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis implied a ZEP paralog was a key gene involved in carotenoid accumulation in yellow-fleshed sweetpotato.
    Suematsu K; Tanaka M; Kurata R; Kai Y
    Sci Rep; 2020 Nov; 10(1):20607. PubMed ID: 33244002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures.
    Kim SH; Ahn YO; Ahn MJ; Jeong JC; Lee HS; Kwak SS
    Plant Physiol Biochem; 2013 Sep; 70():445-54. PubMed ID: 23835362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic and targeted metabolomic analysis identifies genes and metabolites involved in anthocyanin accumulation in tuberous roots of sweetpotato (Ipomoea batatas L.).
    He L; Liu X; Liu S; Zhang J; Zhang Y; Sun Y; Tang R; Wang W; Cui H; Li R; Zhu H; Jia X
    Plant Physiol Biochem; 2020 Nov; 156():323-332. PubMed ID: 32998099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato.
    Kim SH; Ahn YO; Ahn MJ; Lee HS; Kwak SS
    Phytochemistry; 2012 Feb; 74():69-78. PubMed ID: 22154923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar.
    Park SC; Kim SH; Park S; Lee HU; Lee JS; Park WS; Ahn MJ; Kim YH; Jeong JC; Lee HS; Kwak SS
    Plant Physiol Biochem; 2015 Jan; 86():82-90. PubMed ID: 25438140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid Accumulation and Its Contribution to Flower Coloration of
    Wang Y; Zhang C; Dong B; Fu J; Hu S; Zhao H
    Front Plant Sci; 2018; 9():1499. PubMed ID: 30459779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato.
    Kang C; Zhai H; Xue L; Zhao N; He S; Liu Q
    Plant Sci; 2018 Jul; 272():243-254. PubMed ID: 29807598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated Metabolomic and Transcriptomic Analyses Reveal the Basis for Carotenoid Biosynthesis in Sweet Potato (
    Ren Q; Zhen X; Gao H; Liang Y; Li H; Zhao J; Yin M; Han Y; Zhang B
    Metabolites; 2022 Oct; 12(11):. PubMed ID: 36355093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium.
    Lu C; Pu Y; Liu Y; Li Y; Qu J; Huang H; Dai S
    Plant Physiol Biochem; 2019 Sep; 142():415-428. PubMed ID: 31416008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative metabolomic and transcriptomic analysis reveals a coexpression network of the carotenoid metabolism pathway in the panicle of Setaria italica.
    Li H; Han S; Huo Y; Ma G; Sun Z; Li H; Hou S; Han Y
    BMC Plant Biol; 2022 Mar; 22(1):105. PubMed ID: 35260077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya.
    Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R
    BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.].
    Gemenet DC; da Silva Pereira G; De Boeck B; Wood JC; Mollinari M; Olukolu BA; Diaz F; Mosquera V; Ssali RT; David M; Kitavi MN; Burgos G; Felde TZ; Ghislain M; Carey E; Swanckaert J; Coin LJM; Fei Z; Hamilton JP; Yada B; Yencho GC; Zeng ZB; Mwanga ROM; Khan A; Gruneberg WJ; Buell CR
    Theor Appl Genet; 2020 Jan; 133(1):23-36. PubMed ID: 31595335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the Golden SNP-Carrying
    Kim SE; Lee CJ; Park SU; Lim YH; Park WS; Kim HJ; Ahn MJ; Kwak SS; Kim HS
    Antioxidants (Basel); 2021 Jan; 10(1):. PubMed ID: 33406723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Genes of
    Xi W; Zhang L; Liu S; Zhao G
    Front Plant Sci; 2020; 11():607715. PubMed ID: 33391319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotenoid contents of extruded and non-extruded sweetpotato flours from Papua New Guinea and Australia.
    Waramboi JG; Gidley MJ; Sopade PA
    Food Chem; 2013 Dec; 141(3):1740-6. PubMed ID: 23870886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined analysis of carotenoid metabolites and the transcriptome to reveal the molecular mechanism underlying fruit colouration in zucchini (
    Xu X; Lu X; Tang Z; Zhang X; Lei F; Hou L; Li M
    Food Chem (Oxf); 2021 Jul; 2():100021. PubMed ID: 35415627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic and Metabolic Profiling of High-Temperature Treated Storage Roots Reveals the Mechanism of Saccharification in Sweetpotato (
    Li C; Kou M; Arisha MH; Tang W; Ma M; Yan H; Wang X; Wang X; Zhang Y; Liu Y; Gao R; Li Q
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptomics reveals candidate carotenoid color genes in an East African cichlid fish.
    Ahi EP; Lecaudey LA; Ziegelbecker A; Steiner O; Glabonjat R; Goessler W; Hois V; Wagner C; Lass A; Sefc KM
    BMC Genomics; 2020 Jan; 21(1):54. PubMed ID: 31948394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.