BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36340430)

  • 1. Transformational change in the field of diffuse optics: From going bananas to going nuts.
    Fantini S; Blaney G; Sassaroli A
    J Innov Opt Health Sci; 2020 Jan; 13(1):. PubMed ID: 36340430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-slope imaging in highly scattering media with frequency-domain near-infrared spectroscopy.
    Blaney G; Sassaroli A; Fantini S
    Opt Lett; 2020 Aug; 45(16):4464-4467. PubMed ID: 32796984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-slope imaging of cerebral hemodynamics with frequency-domain near-infrared spectroscopy.
    Blaney G; Fernandez C; Sassaroli A; Fantini S
    Neurophotonics; 2023 Jan; 10(1):013508. PubMed ID: 36601543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel data types for frequency-domain diffuse optical spectroscopy and imaging of tissues: characterization of sensitivity and contrast-to-noise ratio for absorption perturbations.
    Sassaroli A; Blaney G; Fantini S
    Biomed Opt Express; 2023 May; 14(5):2091-2116. PubMed ID: 37206129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-slope method for enhanced depth sensitivity in diffuse optical spectroscopy.
    Sassaroli A; Blaney G; Fantini S
    J Opt Soc Am A Opt Image Sci Vis; 2019 Oct; 36(10):1743-1761. PubMed ID: 31674440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a source-detector array for dual-slope diffuse optical imaging.
    Blaney G; Sassaroli A; Fantini S
    Rev Sci Instrum; 2020 Sep; 91(9):093702. PubMed ID: 33003793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase dual-slopes in frequency-domain near-infrared spectroscopy for enhanced sensitivity to brain tissue: First applications to human subjects.
    Blaney G; Sassaroli A; Pham T; Fernandez C; Fantini S
    J Biophotonics; 2020 Jan; 13(1):e201960018. PubMed ID: 31479582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-selective method for time-domain diffuse reflectance measurements: validation study of the dual subtraction technique.
    Fazliazar E; Sudakou A; Sawosz P; Gerega A; Kacprzak M; Liebert A
    Biomed Opt Express; 2023 Dec; 14(12):6233-6249. PubMed ID: 38420319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on the Determination System of Tissue Optical Properties Based on Diffuse Reflectance Spectrum].
    Li CX; Sun Z; Han L; Zhao HJ; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1532-6. PubMed ID: 30001058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VIS-NIR Diffuse Reflectance Spectroscopy System with Self-Calibrating Fiber-Optic Probe: Study of Perturbation Resistance.
    Perekatova V; Kostyuk A; Kirillin M; Sergeeva E; Kurakina D; Shemagina O; Orlova A; Khilov A; Turchin I
    Diagnostics (Basel); 2023 Jan; 13(3):. PubMed ID: 36766562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-distance frequency-domain optical measurements of coherent cerebral hemodynamics.
    Blaney G; Sassaroli A; Pham T; Krishnamurthy N; Fantini S
    Photonics; 2019; 6(3):. PubMed ID: 34079837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo local determination of tissue optical properties: applications to human brain.
    Bevilacqua F; Piguet D; Marquet P; Gross JD; Tromberg BJ; Depeursinge C
    Appl Opt; 1999 Aug; 38(22):4939-50. PubMed ID: 18323984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-bundle microendoscopy with sub-diffuse reflectance spectroscopy and intensity mapping for multimodal optical biopsy of stratified epithelium.
    Greening GJ; James HM; Powless AJ; Hutcheson JA; Dierks MK; Rajaram N; Muldoon TJ
    Biomed Opt Express; 2015 Dec; 6(12):4934-50. PubMed ID: 26713207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method to improve the depth sensitivity of diffuse reflectance measurements to absorption changes in optically turbid medium.
    Sawosz P; Liebert A
    Biomed Opt Express; 2019 Oct; 10(10):5031-5041. PubMed ID: 31646028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of effect of modulation frequency on high-density diffuse optical tomography image quality.
    Fan W; Dehghani H; Eggebrecht AT
    Neurophotonics; 2021 Oct; 8(4):045002. PubMed ID: 34849379
    [No Abstract]   [Full Text] [Related]  

  • 17. Using an oblique incident laser beam to measure the optical properties of stomach mucosa/submucosa tissue.
    Wei HJ; Xing D; He BH; Gu HM; Wu GY; Chen XM
    BMC Gastroenterol; 2009 Aug; 9():64. PubMed ID: 19715589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal regression in frequency-domain diffuse optical tomography to remove superficial signal contamination.
    Veesa JD; Dehghani H
    Neurophotonics; 2021 Jan; 8(1):015013. PubMed ID: 33816650
    [No Abstract]   [Full Text] [Related]  

  • 19. Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy.
    Abookasis D; Shochat A; Mathews MS
    J Biomed Opt; 2013 Apr; 18(4):045003. PubMed ID: 23558510
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.