These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 36340511)
1. The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm. Runfola C; Vitali S; Pagnini G R Soc Open Sci; 2022 Nov; 9(11):221141. PubMed ID: 36340511 [TBL] [Abstract][Full Text] [Related]
2. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. Gajda J; Magdziarz M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575 [TBL] [Abstract][Full Text] [Related]
3. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles. Lukassen LJ; Oberlack M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777 [TBL] [Abstract][Full Text] [Related]
4. Analytic description of anomalous diffusion in heterogeneous environments: Fokker-Planck equation without fractional derivatives. Likhomanova P; Kalashnikov I Phys Rev E; 2020 Aug; 102(2-1):022108. PubMed ID: 32942441 [TBL] [Abstract][Full Text] [Related]
5. Fractional Fokker-Planck equation for fractal media. Tarasov VE Chaos; 2005 Jun; 15(2):23102. PubMed ID: 16035878 [TBL] [Abstract][Full Text] [Related]
6. Fractional Fokker-Planck subdiffusion in alternating force fields. Heinsalu E; Patriarca M; Goychuk I; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041137. PubMed ID: 19518203 [TBL] [Abstract][Full Text] [Related]
7. Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations. Wei Q; Wang W; Zhou H; Metzler R; Chechkin A Phys Rev E; 2023 Aug; 108(2-1):024125. PubMed ID: 37723675 [TBL] [Abstract][Full Text] [Related]
8. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
9. Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Lévy Stable Processes. Anderson J; Moradi S; Rafiq T Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265849 [TBL] [Abstract][Full Text] [Related]
10. Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces. Henry BI; Langlands TA; Straka P Phys Rev Lett; 2010 Oct; 105(17):170602. PubMed ID: 21231032 [TBL] [Abstract][Full Text] [Related]
11. Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment. Weber P; Bełdowski P; Bier M; Gadomski A Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265740 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle. Kaniadakis G; Hristopulos DT Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516 [TBL] [Abstract][Full Text] [Related]
13. Fractional Fokker-Planck equation and oscillatory behavior of cumulant moments. Suzuki N; Biyajima M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016123. PubMed ID: 11800752 [TBL] [Abstract][Full Text] [Related]
14. Fractional brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. Magdziarz M; Weron A; Burnecki K; Klafter J Phys Rev Lett; 2009 Oct; 103(18):180602. PubMed ID: 19905793 [TBL] [Abstract][Full Text] [Related]
15. First-passage time for superstatistical Fokker-Planck models. Budini AA; Cáceres MO Phys Rev E; 2018 Jan; 97(1-1):012137. PubMed ID: 29448367 [TBL] [Abstract][Full Text] [Related]
16. From continuous time random walks to the fractional fokker-planck equation. Barkai E; Metzler R; Klafter J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):132-8. PubMed ID: 11046248 [TBL] [Abstract][Full Text] [Related]
17. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
18. Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion. Abe S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016102. PubMed ID: 14995662 [TBL] [Abstract][Full Text] [Related]
19. Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. Magdziarz M; Weron A; Weron K Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016708. PubMed ID: 17358293 [TBL] [Abstract][Full Text] [Related]
20. Microscopic theory of anomalous diffusion based on particle interactions. Lutsko JF; Boon JP Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022108. PubMed ID: 24032776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]