These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36340511)

  • 21. Anomalous diffusion and the first passage time problem.
    Rangarajan G; Ding M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):120-33. PubMed ID: 11088443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise.
    Lin L; Duan J; Wang X; Zhang Y
    Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transient anomalous diffusion with Prabhakar-type memory.
    Stanislavsky A; Weron A
    J Chem Phys; 2018 Jul; 149(4):044107. PubMed ID: 30068155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fokker-Planck equation in a wedge domain: anomalous diffusion and survival probability.
    Lenzi EK; Evangelista LR; Lenzi MK; da Silva LR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021131. PubMed ID: 19792101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient.
    Milovanov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047301. PubMed ID: 11308983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anomalous diffusion in nonhomogeneous media: time-subordinated Langevin equation approach.
    Srokowski T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):030102. PubMed ID: 24730774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microscopic models for dielectric relaxation in disordered systems.
    Kalmykov YP; Coffey WT; Crothers DS; Titov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041103. PubMed ID: 15600393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport.
    Börgers C; Larsen EW
    Med Phys; 1996 Oct; 23(10):1749-59. PubMed ID: 8946371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inertial effects in the fractional translational diffusion of a Brownian particle in a double-well potential.
    Kalmykov YP; Coffey WT; Titov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031101. PubMed ID: 17500662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fokker-Planck-type equations for a simple gas and for a semirelativistic Brownian motion from a relativistic kinetic theory.
    Chacón-Acosta G; Kremer GM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021201. PubMed ID: 17930026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subdiffusive master equation with space-dependent anomalous exponent and structural instability.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031132. PubMed ID: 22587063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anomalous rotational relaxation: a fractional Fokker-Planck equation approach.
    Aydiner E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046103. PubMed ID: 15903722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions.
    Bologna M; Tsallis C; Grigolini P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2213-8. PubMed ID: 11088687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamics and fractional Fokker-Planck equations.
    Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056111. PubMed ID: 11414965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach.
    Trigger SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046403. PubMed ID: 12786497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory.
    Zhan Y; Shizgal BD
    Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation.
    Weron A; Magdziarz M; Weron K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036704. PubMed ID: 18517554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for the brownian motion in a potential. II. The matrix continued fraction approach.
    Kalmykov YP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):227-36. PubMed ID: 11088456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.