These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36340589)

  • 1. MemoBox: A mechanical follow-the-leader system for minimally invasive surgery.
    Culmone C; Jager DJ; Breedveld P
    Front Med Technol; 2022; 4():938643. PubMed ID: 36340589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Follow-the-Leader motion of a hyper-redundant surgical instrument: Proof-of-concept prototype and first tests.
    Henselmans PW; Smit G; Breedveld P
    Proc Inst Mech Eng H; 2019 Nov; 233(11):1141-1150. PubMed ID: 31526098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MemoFlex II, a non-robotic approach to follow-the-leader motion of a snake-like instrument for surgery using four predetermined physical tracks.
    Henselmans PWJ; Culmone C; Jager DJ; van Starkenburg RIB; Breedveld P
    Med Eng Phys; 2020 Dec; 86():86-95. PubMed ID: 33261739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Memo Slide: An explorative study into a novel mechanical follow-the-leader mechanism.
    Henselmans PW; Gottenbos S; Smit G; Breedveld P
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1213-1223. PubMed ID: 29125034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steerable Surgical Instrument for Conventional and Single-Site Minimally Invasive Surgery.
    Hernández-Valderrama VG; Ordorica-Flores RM; Montoya-Alvarez S; Haro-Mendoza D; Ochoa-Toledo L; Lorias-Espinoza D; Ortiz-Simón JL; Pérez-Escamirosa F
    Surg Innov; 2022 Jun; 29(3):449-458. PubMed ID: 34358428
    [No Abstract]   [Full Text] [Related]  

  • 6. Exploring non-assembly 3D printing for novel compliant surgical devices.
    Culmone C; Henselmans PWJ; van Starkenburg RIB; Breedveld P
    PLoS One; 2020; 15(5):e0232952. PubMed ID: 32407397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two cable configurations in 3D printed steerable instruments for minimally invasive surgery.
    Culmone C; van Starkenburg R; Smit G; Breedveld P
    PLoS One; 2022; 17(10):e0275535. PubMed ID: 36194613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Articulated minimally invasive surgical instrument based on compliant mechanism.
    Arata J; Kogiso S; Sakaguchi M; Nakadate R; Oguri S; Uemura M; Byunghyun C; Akahoshi T; Ikeda T; Hashizume M
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1837-43. PubMed ID: 25698401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attaining high bending stiffness by full actuation in steerable minimally invasive surgical instruments.
    Jelínek F; Gerboni G; Henselmans PW; Pessers R; Breedveld P
    Minim Invasive Ther Allied Technol; 2015 Apr; 24(2):77-85. PubMed ID: 25263681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cable-driven distal end-effector mechanism for single-port robotic surgery.
    Wang Y; Cao Q; Zhu X; Wang P
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):301-309. PubMed ID: 33389605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Follow-The-Leader Mechanisms in Medical Devices: A Review on Scientific and Patent Literature.
    Culmone C; Yikilmaz FS; Trauzettel F; Breedveld P
    IEEE Rev Biomed Eng; 2023; 16():439-455. PubMed ID: 34543205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency and Power Limits of Electrical and Tendon-Sheath Transmissions for Surgical Robotics.
    Wagner CR; Emmanouil E
    Front Robot AI; 2018; 5():50. PubMed ID: 33644118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position Control and Force Estimation Method for Surgical Forceps Using SMA Actuators and Sensors.
    Braun D; Weik D; Elsner S; Hunger S; Werner M; Drossel WG
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control devices and steering strategies in pathway surgery.
    Fan C; Jelínek F; Dodou D; Breedveld P
    J Surg Res; 2015 Feb; 193(2):543-53. PubMed ID: 25438958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HelixFlex: bioinspired maneuverable instrument for skull base surgery.
    Gerboni G; Henselmans PW; Arkenbout EA; van Furth WR; Breedveld P
    Bioinspir Biomim; 2015 Dec; 10(6):066013. PubMed ID: 26623568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of multi-degrees-of-freedom dexterous modular arm instruments for minimally invasive surgery.
    Cepolina FE; Zoppi M
    Proc Inst Mech Eng H; 2012 Nov; 226(11):827-37. PubMed ID: 23185953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A shape memory alloy-actuated surgical instrument with compact volume.
    Shi ZY; Liu D; Wang TM
    Int J Med Robot; 2014 Dec; 10(4):474-81. PubMed ID: 24375955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for minimising rolling joint play in the steerable laparoscopic instrument prototype DragonFlex.
    Jelínek F; Diepens T; Dobbenga S; van der Jagt G; Kreeft D; Smid A; Pessers R; Breedveld P
    Minim Invasive Ther Allied Technol; 2015 Jun; 24(3):181-8. PubMed ID: 25407751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentric Tube Robots as Steerable Needles: Achieving Follow-the-Leader Deployment.
    Gilbert HB; Neimat J; Webster RJ
    IEEE Trans Robot; 2015 Apr; 31(2):246-258. PubMed ID: 26622208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training.
    Tzemanaki A; Walters P; Pipe AG; Melhuish C; Dogramadzi S
    Int J Med Robot; 2014 Sep; 10(3):368-78. PubMed ID: 24127331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.