BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36341418)

  • 1.
    Prichard A; Khuu L; Whitmore LC; Irimia D; Allen LH
    Front Immunol; 2022; 13():1038349. PubMed ID: 36341418
    [No Abstract]   [Full Text] [Related]  

  • 2. Cutting Edge:
    Whitmore LC; Weems MN; Allen LH
    J Immunol; 2017 Mar; 198(5):1793-1797. PubMed ID: 28148734
    [No Abstract]   [Full Text] [Related]  

  • 3. Filamin-A regulates neutrophil uropod retraction through RhoA during chemotaxis.
    Sun C; Forster C; Nakamura F; Glogauer M
    PLoS One; 2013; 8(10):e79009. PubMed ID: 24205360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration.
    Eddy RJ; Pierini LM; Matsumura F; Maxfield FR
    J Cell Sci; 2000 Apr; 113 ( Pt 7)():1287-98. PubMed ID: 10704379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rac1 links leading edge and uropod events through Rho and myosin activation during chemotaxis.
    Pestonjamasp KN; Forster C; Sun C; Gardiner EM; Bohl B; Weiner O; Bokoch GM; Glogauer M
    Blood; 2006 Oct; 108(8):2814-20. PubMed ID: 16809619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubules and Dynein Regulate Human Neutrophil Nuclear Volume and Hypersegmentation During
    Silva-Del Toro SL; Allen LH
    Front Immunol; 2021; 12():653100. PubMed ID: 33828562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Front-Rear Coupling in Neutrophil Chemotaxis by Dynamic Myosin II Localization.
    Tsai TY; Collins SR; Chan CK; Hadjitheodorou A; Lam PY; Lou SS; Yang HW; Jorgensen J; Ellett F; Irimia D; Davidson MW; Fischer RS; Huttenlocher A; Meyer T; Ferrell JE; Theriot JA
    Dev Cell; 2019 Apr; 49(2):189-205.e6. PubMed ID: 31014479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal organization, regulation, and functions of tractions during neutrophil chemotaxis.
    Shin ME; He Y; Li D; Na S; Chowdhury F; Poh YC; Collin O; Su P; de Lanerolle P; Schwartz MA; Wang N; Wang F
    Blood; 2010 Oct; 116(17):3297-310. PubMed ID: 20616216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phagocytosis and persistence of Helicobacter pylori.
    Allen LA
    Cell Microbiol; 2007 Apr; 9(4):817-28. PubMed ID: 17346311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The trafficking protein JFC1 regulates Rac1-GTP localization at the uropod controlling neutrophil chemotaxis and in vivo migration.
    Ramadass M; Johnson JL; Marki A; Zhang J; Wolf D; Kiosses WB; Pestonjamasp K; Ley K; Catz SD
    J Leukoc Biol; 2019 Jun; 105(6):1209-1224. PubMed ID: 30748033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type Igamma PIP kinase is a novel uropod component that regulates rear retraction during neutrophil chemotaxis.
    Lokuta MA; Senetar MA; Bennin DA; Nuzzi PA; Chan KT; Ott VL; Huttenlocher A
    Mol Biol Cell; 2007 Dec; 18(12):5069-80. PubMed ID: 17928408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric distribution of myosin IIB in migrating endothelial cells is regulated by a rho-dependent kinase and contributes to tail retraction.
    Kolega J
    Mol Biol Cell; 2003 Dec; 14(12):4745-57. PubMed ID: 12960430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment.
    Ludwig A; Otto GP; Riento K; Hams E; Fallon PG; Nichols BJ
    J Cell Biol; 2010 Nov; 191(4):771-81. PubMed ID: 21059848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis.
    Weiner OD; Rentel MC; Ott A; Brown GE; Jedrychowski M; Yaffe MB; Gygi SP; Cantley LC; Bourne HR; Kirschner MW
    PLoS Biol; 2006 Feb; 4(2):e38. PubMed ID: 16417406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ClC-3 and IClswell are required for normal neutrophil chemotaxis and shape change.
    Volk AP; Heise CK; Hougen JL; Artman CM; Volk KA; Wessels D; Soll DR; Nauseef WM; Lamb FS; Moreland JG
    J Biol Chem; 2008 Dec; 283(49):34315-26. PubMed ID: 18840613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Front-signal-dependent accumulation of the RHOA inhibitor FAM65B at leading edges polarizes neutrophils.
    Gao K; Tang W; Li Y; Zhang P; Wang D; Yu L; Wang C; Wu D
    J Cell Sci; 2015 Mar; 128(5):992-1000. PubMed ID: 25588844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional reorientation of migrating neutrophils is limited by suppression of receptor input signaling at the cell rear through myosin II activity.
    Hadjitheodorou A; Bell GRR; Ellett F; Shastry S; Irimia D; Collins SR; Theriot JA
    Nat Commun; 2021 Nov; 12(1):6619. PubMed ID: 34785640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helicobacter felis does not stimulate human neutrophil oxidative burst in contrast to 'Gastrospirillum hominis' and Helicobacter pylori.
    Hansen TK; Hansen PS; Nørgaard A; Nielsen H; Lee A; Andersen LP
    FEMS Immunol Med Microbiol; 2001 Apr; 30(3):187-95. PubMed ID: 11335137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation.
    Lecut C; Frederix K; Johnson DM; Deroanne C; Thiry M; Faccinetto C; Marée R; Evans RJ; Volders PG; Bours V; Oury C
    J Immunol; 2009 Aug; 183(4):2801-9. PubMed ID: 19635923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helicobacter pylori products upregulate neutrophil superoxide anion production.
    Tennenberg SD; Dekhne N; Gordon D; Weller J; McCurdy B; Lange P; Kozol RA
    Int J Surg Investig; 1999; 1(4):301-6. PubMed ID: 12774453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.