BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36341726)

  • 1. Identification and characterization of hypothalamic circular RNAs associated with bovine residual feed intake.
    Zhao L; Ding Y; Yang C; Wang P; Zhao Z; Ma Y; Shi Y; Kang X
    Gene; 2023 Jan; 851():147017. PubMed ID: 36341726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of circular RNAs in association with the feed efficiency in Hu lambs.
    Zhang D; Zhang X; Li F; Li X; Zhao Y; Zhang Y; Zhao L; Xu D; Wang J; Yang X; Cui P; Wang W
    BMC Genomics; 2022 Apr; 23(1):288. PubMed ID: 35399048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial protein gene expression and the oxidative phosphorylation pathway associated with feed efficiency and energy balance in dairy cattle.
    Dorji J; MacLeod IM; Chamberlain AJ; Vander Jagt CJ; Ho PN; Khansefid M; Mason BA; Prowse-Wilkins CP; Marett LC; Wales WJ; Cocks BG; Pryce JE; Daetwyler HD
    J Dairy Sci; 2021 Jan; 104(1):575-587. PubMed ID: 33162069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrative transcriptome analysis indicates regulatory mRNA-miRNA networks for residual feed intake in Nelore cattle.
    De Oliveira PSN; Coutinho LL; Tizioto PC; Cesar ASM; de Oliveira GB; Diniz WJDS; De Lima AO; Reecy JM; Mourão GB; Zerlotini A; Regitano LCA
    Sci Rep; 2018 Nov; 8(1):17072. PubMed ID: 30459456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and Duodenal Transcriptome Analysis of Chinese Beef Cattle With Divergent Feed Efficiency Using RNA-Seq.
    Yang C; Han L; Li P; Ding Y; Zhu Y; Huang Z; Dan X; Shi Y; Kang X
    Front Genet; 2021; 12():741878. PubMed ID: 34675965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-tissue transcriptome profiling linked the association between tissue-specific circRNAs and the heterosis for feed intake and efficiency in chicken.
    Yuan J; Li Q; Sun Y; Wang Y; Li Y; You Z; Ni A; Zong Y; Ma H; Chen J
    Poult Sci; 2024 Jul; 103(7):103783. PubMed ID: 38713987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake.
    Al-Husseini W; Chen Y; Gondro C; Herd RM; Gibson JP; Arthur PF
    Asian-Australas J Anim Sci; 2016 Oct; 29(10):1371-82. PubMed ID: 26954124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle.
    Cantalapiedra-Hijar G; Abo-Ismail M; Carstens GE; Guan LL; Hegarty R; Kenny DA; McGee M; Plastow G; Relling A; Ortigues-Marty I
    Animal; 2018 Dec; 12(s2):s321-s335. PubMed ID: 30139392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentially expressed mRNAs, proteins and miRNAs associated to energy metabolism in skeletal muscle of beef cattle identified for low and high residual feed intake.
    Carvalho EB; Gionbelli MP; Rodrigues RTS; Bonilha SFM; Newbold CJ; Guimarães SEF; Silva W; Verardo LL; Silva FF; Detmann E; Duarte MS
    BMC Genomics; 2019 Jun; 20(1):501. PubMed ID: 31208329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression analysis of blood, liver, and muscle in cattle divergently selected for high and low residual feed intake.
    Khansefid M; Millen CA; Chen Y; Pryce JE; Chamberlain AJ; Vander Jagt CJ; Gondro C; Goddard ME
    J Anim Sci; 2017 Nov; 95(11):4764-4775. PubMed ID: 29293712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake.
    Kong RS; Liang G; Chen Y; Stothard P; Guan le L
    BMC Genomics; 2016 Aug; 17():592. PubMed ID: 27506548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of functional candidate variants and genes for feed efficiency in Holstein and Jersey cattle breeds using RNA-sequencing.
    Lam S; Miglior F; Fonseca PAS; Gómez-Redondo I; Zeidan J; Suárez-Vega A; Schenkel F; Guan LL; Waters S; Stothard P; Cánovas A
    J Dairy Sci; 2021 Feb; 104(2):1928-1950. PubMed ID: 33358171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-density genome-wide association study for residual feed intake in Holstein dairy cattle.
    Li B; Fang L; Null DJ; Hutchison JL; Connor EE; VanRaden PM; VandeHaar MJ; Tempelman RJ; Weigel KA; Cole JB
    J Dairy Sci; 2019 Dec; 102(12):11067-11080. PubMed ID: 31563317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excavation and characterization of key circRNAs for milk fat percentage in Holstein cattle.
    Feng X; Cai Z; Gu Y; Mu T; Yu B; Ma R; Liu J; Wang C; Zhang J
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37209411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the key genes and functional enrichment pathways associated with feed efficiency in cattle.
    Yang C; Zhu Y; Ding Y; Huang Z; Dan X; Shi Y; Kang X
    Gene; 2022 Jan; 807():145934. PubMed ID: 34478820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residual feed intake studies in Angus-sired cattle reveal a potential role for hypothalamic gene expression in regulating feed efficiency.
    Perkins SD; Key CN; Garrett CF; Foradori CD; Bratcher CL; Kriese-Anderson LA; Brandebourg TD
    J Anim Sci; 2014 Feb; 92(2):549-60. PubMed ID: 24398827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a circRNA-miRNA-mRNA network based on differentially co-expressed circular RNA in gastric cancer tissue and plasma by bioinformatics analysis.
    Gong Y; Jiao Y; Qi X; Fu J; Qian J; Zhu J; Yang H; Tang L
    World J Surg Oncol; 2022 Feb; 20(1):34. PubMed ID: 35164778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An across breed, diet and tissue analysis reveals the transcription factor NR1H3 as a key mediator of residual feed intake in beef cattle.
    Keogh K; Kenny DA; Alexandre PA; McGee M; Reverter A
    BMC Genomics; 2024 Mar; 25(1):234. PubMed ID: 38438858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associations between residual feed intake and apparent nutrient digestibility, in vitro methane-producing activity, and volatile fatty acid concentrations in growing beef cattle1.
    Johnson JR; Carstens GE; Krueger WK; Lancaster PA; Brown EG; Tedeschi LO; Anderson RC; Johnson KA; Brosh A
    J Anim Sci; 2019 Jul; 97(8):3550-3561. PubMed ID: 31175808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of candidate genes for residual feed intake in Angus cattle.
    Al-Husseini W; Gondro C; Quinn K; Herd RM; Gibson JP; Chen Y
    Anim Genet; 2014 Feb; 45(1):12-9. PubMed ID: 24134470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.