BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36342176)

  • 1. Copolymerization of Carbonyl Sulfide and Propylene Oxide via a Heterogeneous Prussian Blue Analogue Catalyst with High Productivity and Selectivity.
    Ullah Khan M; Ullah Khan S; Cao X; Usman M; Yue X; Ghaffar A; Hassan M; Zhang C; Zhang X
    Chem Asian J; 2023 Jan; 18(1):e202201050. PubMed ID: 36342176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(monothiocarbonate)s from the Alternating and Regioselective Copolymerization of Carbonyl Sulfide with Epoxides.
    Luo M; Zhang XH; Darensbourg DJ
    Acc Chem Res; 2016 Oct; 49(10):2209-2219. PubMed ID: 27676451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.
    Yang JL; Cao XH; Zhang CJ; Wu HL; Zhang XH
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29385077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfectly Alternating and Regioselective Copolymerization of Carbonyl Sulfide and Epoxides by Metal-Free Lewis Pairs.
    Yang JL; Wu HL; Li Y; Zhang XH; Darensbourg DJ
    Angew Chem Int Ed Engl; 2017 May; 56(21):5774-5779. PubMed ID: 28444916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Chiral Sulfur-Containing Polymers: Asymmetric Copolymerization of meso-Epoxides and Carbonyl Sulfide.
    Yue TJ; Ren WM; Chen L; Gu GG; Liu Y; Lu XB
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12670-12674. PubMed ID: 30088310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Synthesis of Well-Defined Branched Sulfur-Containing Copolymers: One-Pot Copolymerization of Carbonyl Sulfide and Epoxide.
    Yue TJ; Bhat GA; Zhang WJ; Ren WM; Lu XB; Darensbourg DJ
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13633-13637. PubMed ID: 32372553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts.
    Jeon JY; Eo SC; Varghese JK; Lee BY
    Beilstein J Org Chem; 2014; 10():1787-95. PubMed ID: 25161738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Chain Transfer Copolymerization of Propylene Oxide and CO
    Marbach J; Höfer T; Bornholdt N; Luinstra GA
    ChemistryOpen; 2019 Jul; 8(7):828-839. PubMed ID: 31304076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise synthesis of sulfur-containing polymers via cooperative dual organocatalysts with high activity.
    Zhang CJ; Wu HL; Li Y; Yang JL; Zhang XH
    Nat Commun; 2018 May; 9(1):2137. PubMed ID: 29849024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Metamorphoses of d-Xylose Oxetane- and Carbonyl Sulfide-Based Polymers
    Tran DK; Braaksma AN; Andras AM; Boopathi SK; Darensbourg DJ; Wooley KL
    J Am Chem Soc; 2023 Aug; 145(33):18560-18567. PubMed ID: 37578470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity.
    Cohen CT; Chu T; Coates GW
    J Am Chem Soc; 2005 Aug; 127(31):10869-78. PubMed ID: 16076192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst.
    Ren WM; Liu ZW; Wen YQ; Zhang R; Lu XB
    J Am Chem Soc; 2009 Aug; 131(32):11509-18. PubMed ID: 19624164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(III)-based catalyst systems.
    Wu GP; Wei SH; Ren WM; Lu XB; Xu TQ; Darensbourg DJ
    J Am Chem Soc; 2011 Sep; 133(38):15191-9. PubMed ID: 21854028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Dinuclear Cobalt Complex for Copolymerization of CO
    Wang WZ; Zhang KY; Jia XG; Wang L; Li LL; Fan W; Xia L
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32911616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concerning the deactivation of cobalt(III)-based porphyrin and salen catalysts in epoxide/CO2 copolymerization.
    Xia W; Salmeia KA; Vagin SI; Rieger B
    Chemistry; 2015 Mar; 21(11):4384-90. PubMed ID: 25656829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production.
    Darensbourg DJ; Yarbrough JC; Ortiz C; Fang CC
    J Am Chem Soc; 2003 Jun; 125(25):7586-91. PubMed ID: 12812499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Single-Site Iron(III)-Salan Catalyst for Converting COS to Sulfur-Containing Polymers.
    Gu GG; Yue TJ; Wan ZQ; Zhang R; Lu XB; Ren WM
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide.
    Robertson NJ; Qin Z; Dallinger GC; Lobkovsky EB; Lee S; Coates GW
    Dalton Trans; 2006 Dec; (45):5390-5. PubMed ID: 17102864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate.
    Lin KA; Chen BJ
    Chemosphere; 2017 Jan; 166():146-156. PubMed ID: 27693875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the Mechanism of Carbon Dioxide and Propylene Oxide Ring-Opening Copolymerization Using a Co(III)/K(I) Heterodinuclear Catalyst.
    Deacy AC; Phanopoulos A; Lindeboom W; Buchard A; Williams CK
    J Am Chem Soc; 2022 Oct; 144(39):17929-17938. PubMed ID: 36130075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.