These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 36342186)

  • 1. sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure.
    Yan K; Lv H; Guo Y; Peng W; Liu B
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. deepAMPNet: a novel antimicrobial peptide predictor employing AlphaFold2 predicted structures and a bi-directional long short-term memory protein language model.
    Zhao F; Qiu J; Xiang D; Jiao P; Cao Y; Xu Q; Qiao D; Xu H; Cao Y
    PeerJ; 2024; 12():e17729. PubMed ID: 39040937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning.
    Cordoves-Delgado G; GarcĂ­a-Jacas CR
    J Chem Inf Model; 2024 May; 64(10):4310-4321. PubMed ID: 38739853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PGAT-ABPp: harnessing protein language models and graph attention networks for antibacterial peptide identification with remarkable accuracy.
    Hao Y; Liu X; Fu H; Shao X; Cai W
    Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39120878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATSE: a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural network and attention mechanism.
    Wei L; Ye X; Xue Y; Sakurai T; Wei L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation.
    Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification.
    Zhong G; Liu H; Deng L
    Interdiscip Sci; 2024 Dec; 16(4):951-965. PubMed ID: 38972032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate protein function prediction via graph attention networks with predicted structure information.
    Lai B; Xu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34882195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities.
    Pang Y; Yao L; Xu J; Wang Z; Lee TY
    Bioinformatics; 2022 Dec; 38(24):5368-5374. PubMed ID: 36326438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TPpred-ATMV: therapeutic peptide prediction by adaptive multi-view tensor learning model.
    Yan K; Lv H; Guo Y; Chen Y; Wu H; Liu B
    Bioinformatics; 2022 May; 38(10):2712-2718. PubMed ID: 35561206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning improves antimicrobial peptide recognition.
    Veltri D; Kamath U; Shehu A
    Bioinformatics; 2018 Aug; 34(16):2740-2747. PubMed ID: 29590297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion.
    Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S
    Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DP-site: A dual deep learning-based method for protein-peptide interaction site prediction.
    Shafiee S; Fathi A; Taherzadeh G
    Methods; 2024 Sep; 229():17-29. PubMed ID: 38871095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GATSol, an enhanced predictor of protein solubility through the synergy of 3D structure graph and large language modeling.
    Li B; Ming D
    BMC Bioinformatics; 2024 Jun; 25(1):204. PubMed ID: 38824535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LMPred: predicting antimicrobial peptides using pre-trained language models and deep learning.
    Dee W
    Bioinform Adv; 2022; 2(1):vbac021. PubMed ID: 36699381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.