BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36342193)

  • 1. The Polo kinase Cdc5 is regulated at multiple levels in the adaptation response to telomere dysfunction.
    Coutelier H; Ilioaia O; Le Peillet J; Hamon M; D'Amours D; Teixeira MT; Xu Z
    Genetics; 2023 Jan; 223(1):. PubMed ID: 36342193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation.
    Vidanes GM; Sweeney FD; Galicia S; Cheung S; Doyle JP; Durocher D; Toczyski DP
    PLoS Biol; 2010 Jan; 8(1):e1000286. PubMed ID: 20126259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway.
    Donnianni RA; Ferrari M; Lazzaro F; Clerici M; Tamilselvan Nachimuthu B; Plevani P; Muzi-Falconi M; Pellicioli A
    PLoS Genet; 2010 Jan; 6(1):e1000763. PubMed ID: 20098491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced kinase activity of polo kinase Cdc5 affects chromosome stability and DNA damage response in S. cerevisiae.
    Rawal CC; Riccardo S; Pesenti C; Ferrari M; Marini F; Pellicioli A
    Cell Cycle; 2016 Nov; 15(21):2906-2919. PubMed ID: 27565373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation.
    Schleker T; Shimada K; Sack R; Pike BL; Gasser SM
    Cell Cycle; 2010 Jan; 9(2):350-63. PubMed ID: 20046099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical Association of Saccharomyces cerevisiae Polo-like Kinase Cdc5 with Chromosomal Cohesin Facilitates DNA Damage Response.
    Pakchuen S; Ishibashi M; Takakusagi E; Shirahige K; Sutani T
    J Biol Chem; 2016 Aug; 291(33):17228-46. PubMed ID: 27325700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Polo-like kinase Cdc5 in the meiosis recombination checkpoint.
    Iacovella MG; Daly CN; Kelly JS; Michielsen AJ; Clyne RK
    Cell Cycle; 2010 Mar; 9(6):1182-93. PubMed ID: 20237423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms.
    Sanchez Y; Bachant J; Wang H; Hu F; Liu D; Tetzlaff M; Elledge SJ
    Science; 1999 Nov; 286(5442):1166-71. PubMed ID: 10550056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cdc5 blocks in vivo Rad53 activity, but not in situ activity (ISA).
    Lopez-Mosqueda J; Vidanes GM; Toczyski DP
    Cell Cycle; 2010 Nov; 9(21):4266-8. PubMed ID: 20962588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centrosome-Dependent Bypass of the DNA Damage Checkpoint by the Polo Kinase Cdc5.
    Ratsima H; Serrano D; Pascariu M; D'Amours D
    Cell Rep; 2016 Feb; 14(6):1422-1434. PubMed ID: 26832404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants.
    Jia X; Weinert T; Lydall D
    Genetics; 2004 Feb; 166(2):753-64. PubMed ID: 15020465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae.
    Enomoto S; Glowczewski L; Berman J
    Mol Biol Cell; 2002 Aug; 13(8):2626-38. PubMed ID: 12181334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest.
    Pellicioli A; Lee SE; Lucca C; Foiani M; Haber JE
    Mol Cell; 2001 Feb; 7(2):293-300. PubMed ID: 11239458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The budding yeast polo-like kinase Cdc5 regulates the Ndt80 branch of the meiotic recombination checkpoint pathway.
    Acosta I; Ontoso D; San-Segundo PA
    Mol Biol Cell; 2011 Sep; 22(18):3478-90. PubMed ID: 21795394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Checkpoint kinases regulate a global network of transcription factors in response to DNA damage.
    Jaehnig EJ; Kuo D; Hombauer H; Ideker TG; Kolodner RD
    Cell Rep; 2013 Jul; 4(1):174-88. PubMed ID: 23810556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tid1/Rdh54 translocase is phosphorylated through a Mec1- and Rad53-dependent manner in the presence of DSB lesions in budding yeast.
    Ferrari M; Nachimuthu BT; Donnianni RA; Klein H; Pellicioli A
    DNA Repair (Amst); 2013 May; 12(5):347-55. PubMed ID: 23473644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent modulation of the kinase and polo-box activities of Cdc5 protein unravels unique roles in the maintenance of genome stability.
    Ratsima H; Ladouceur AM; Pascariu M; Sauvé V; Salloum Z; Maddox PS; D'Amours D
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):E914-23. PubMed ID: 21987786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation in yeast Tel1p that causes differential effects on the DNA damage checkpoint and telomere maintenance.
    Chakhparonian M; Faucher D; Wellinger RJ
    Curr Genet; 2005 Nov; 48(5):310-22. PubMed ID: 16228207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular function of the yeast polo-like kinase Cdc5 in Cdc14 release during early anaphase.
    Liang F; Jin F; Liu H; Wang Y
    Mol Biol Cell; 2009 Aug; 20(16):3671-9. PubMed ID: 19570916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct surfaces on Cdc5/PLK Polo-box domain orchestrate combinatorial substrate recognition during cell division.
    Almawi AW; Langlois-Lemay L; Boulton S; Rodríguez González J; Melacini G; D'Amours D; Guarné A
    Sci Rep; 2020 Feb; 10(1):3379. PubMed ID: 32099015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.