These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36342196)

  • 1. A framework for group-wise summarization and comparison of chromatin state annotations.
    Vu H; Koch Z; Fiziev P; Ernst J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous chromatin state feature annotation of the human epigenome.
    Daneshpajouh H; Chen B; Shokraneh N; Masoumi S; Wiese KC; Libbrecht MW
    Bioinformatics; 2022 May; 38(11):3029-3036. PubMed ID: 35451453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative approach for fine-mapping chromatin interactions.
    Jaroszewicz A; Ernst J
    Bioinformatics; 2020 Mar; 36(6):1704-1711. PubMed ID: 31742318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments.
    Juric I; Yu M; Abnousi A; Raviram R; Fang R; Zhao Y; Zhang Y; Qiu Y; Yang Y; Li Y; Ren B; Hu M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006982. PubMed ID: 30986246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal annotation of the human genome through integration of over a thousand epigenomic datasets.
    Vu H; Ernst J
    Genome Biol; 2022 Jan; 23(1):9. PubMed ID: 34991667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast detection of differential chromatin domains with SCIDDO.
    Ebert P; Schulz MH
    Bioinformatics; 2021 Jun; 37(9):1198-1205. PubMed ID: 33232443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. hiHMM: Bayesian non-parametric joint inference of chromatin state maps.
    Sohn KA; Ho JW; Djordjevic D; Jeong HH; Park PJ; Kim JH
    Bioinformatics; 2015 Jul; 31(13):2066-74. PubMed ID: 25725496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. annotatr: genomic regions in context.
    Cavalcante RG; Sartor MA
    Bioinformatics; 2017 Aug; 33(15):2381-2383. PubMed ID: 28369316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq.
    Johannes F; Wardenaar R; Colomé-Tatché M; Mousson F; de Graaf P; Mokry M; Guryev V; Timmers HT; Cuppen E; Jansen RC
    Bioinformatics; 2010 Apr; 26(8):1000-6. PubMed ID: 20208068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin-state discovery and genome annotation with ChromHMM.
    Ernst J; Kellis M
    Nat Protoc; 2017 Dec; 12(12):2478-2492. PubMed ID: 29120462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BART3D: inferring transcriptional regulators associated with differential chromatin interactions from Hi-C data.
    Wang Z; Zhang Y; Zang C
    Bioinformatics; 2021 Sep; 37(18):3075-3078. PubMed ID: 33720325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. StereoGene: rapid estimation of genome-wide correlation of continuous or interval feature data.
    Stavrovskaya ED; Niranjan T; Fertig EJ; Wheelan SJ; Favorov AV; Mironov AA
    Bioinformatics; 2017 Oct; 33(20):3158-3165. PubMed ID: 29028265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GenomeDISCO: a concordance score for chromosome conformation capture experiments using random walks on contact map graphs.
    Ursu O; Boley N; Taranova M; Wang YXR; Yardimci GG; Stafford Noble W; Kundaje A
    Bioinformatics; 2018 Aug; 34(16):2701-2707. PubMed ID: 29554289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ROCCO: a robust method for detection of open chromatin via convex optimization.
    Hamilton NH; Furey TS
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38019944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.
    Thibodeau A; Márquez EJ; Luo O; Ruan Y; Menghi F; Shin DG; Stitzel ML; Vera-Licona P; Ucar D
    PLoS Comput Biol; 2016 Jun; 12(6):e1004809. PubMed ID: 27336171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. capC-MAP: software for analysis of Capture-C data.
    Buckle A; Gilbert N; Marenduzzo D; Brackley CA
    Bioinformatics; 2019 Nov; 35(22):4773-4775. PubMed ID: 31173058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts.
    Nair S; Kim DS; Perricone J; Kundaje A
    Bioinformatics; 2019 Jul; 35(14):i108-i116. PubMed ID: 31510655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.