These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36342198)

  • 21. Anaerobic respiration pathways and response to increased substrate availability of Arctic wetland soils.
    Philben M; Zhang L; Yang Z; Taş N; Wullschleger SD; Graham DE; Gu B
    Environ Sci Process Impacts; 2020 Oct; 22(10):2070-2083. PubMed ID: 33084697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management.
    Shaheen SM; Frohne T; White JR; DeLaune RD; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):131-140. PubMed ID: 27240716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils.
    Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M
    Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].
    Si YB; Wang J
    Huan Jing Ke Xue; 2015 Sep; 36(9):3533-42. PubMed ID: 26717720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic mitigation in paddy soils by using microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Chang HC; Zhang J; Wells M; Ren YX; Chen Z
    Environ Pollut; 2018 Jul; 238():647-655. PubMed ID: 29614474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon and hydrogen isotope fractionation during anaerobic toluene oxidation by Geobacter metallireducens with different Fe(III) phases as terminal electron acceptors.
    Tobler NB; Hofstetter TB; Schwarzenbach RP
    Environ Sci Technol; 2008 Nov; 42(21):7786-92. PubMed ID: 19031861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aggregation-dependent electron transfer via redox-active biochar particles stimulate microbial ferrihydrite reduction.
    Yang Z; Sun T; Subdiaga E; Obst M; Haderlein SB; Maisch M; Kretzschmar R; Angenent LT; Kappler A
    Sci Total Environ; 2020 Feb; 703():135515. PubMed ID: 31761354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.
    Ehrenreich A; Widdel F
    Appl Environ Microbiol; 1994 Dec; 60(12):4517-26. PubMed ID: 7811087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alteration of gaseous nitrogen losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China.
    Yi B; Wang H; Zhang Q; Jin H; Abbas T; Li Y; Liu Y; Di H
    Sci Total Environ; 2019 Feb; 652():1139-1147. PubMed ID: 30586800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repeated anaerobic microbial redox cycling of iron.
    Coby AJ; Picardal F; Shelobolina E; Xu H; Roden EE
    Appl Environ Microbiol; 2011 Sep; 77(17):6036-42. PubMed ID: 21742920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature.
    Simmler M; Bommer J; Frischknecht S; Christl I; Kotsev T; Kretzschmar R
    Environ Pollut; 2017 Dec; 231(Pt 1):722-731. PubMed ID: 28850940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields.
    Tan W; Yuan Y; Zhao X; Dang Q; Yuan Y; Li R; Cui D; Xi B
    Sci Total Environ; 2019 Aug; 676():378-386. PubMed ID: 31048168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska.
    Roy Chowdhury T; Herndon EM; Phelps TJ; Elias DA; Gu B; Liang L; Wullschleger SD; Graham DE
    Glob Chang Biol; 2015 Feb; 21(2):722-37. PubMed ID: 25308891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effects of carbon source and flooding time on microbial Fe(III) reduction in paddy soils].
    Yi WJ; Qu D; Wang Q
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3133-40. PubMed ID: 21443000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhizosphere effect and its associated soil-microbe interactions drive iron fraction dynamics in tidal wetland soils.
    Xiao S; Luo M; Liu Y; Bai J; Yang Y; Zhai Z; Huang J
    Sci Total Environ; 2021 Feb; 756():144056. PubMed ID: 33277009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.
    Braunschweig J; Bosch J; Meckenstock RU
    N Biotechnol; 2013 Sep; 30(6):793-802. PubMed ID: 23557995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox fluctuation structures microbial communities in a wet tropical soil.
    Pett-Ridge J; Firestone MK
    Appl Environ Microbiol; 2005 Nov; 71(11):6998-7007. PubMed ID: 16269735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial communities acclimate to recurring changes in soil redox potential status.
    DeAngelis KM; Silver WL; Thompson AW; Firestone MK
    Environ Microbiol; 2010 Dec; 12(12):3137-49. PubMed ID: 20629704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.