These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 36342303)
1. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation. Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303 [TBL] [Abstract][Full Text] [Related]
2. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound. Park TY; Pahk KJ; Kim H Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869 [TBL] [Abstract][Full Text] [Related]
3. The Effects of the Structural and Acoustic Parameters of the Skull Model on Transcranial Focused Ultrasound. Zhang H; Zhang Y; Xu M; Song X; Chen S; Jian X; Ming D Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502853 [TBL] [Abstract][Full Text] [Related]
4. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer. Yoon K; Lee W; Croce P; Cammalleri A; Yoo SS Phys Med Biol; 2018 May; 63(10):105001. PubMed ID: 29658494 [TBL] [Abstract][Full Text] [Related]
5. Skull Impact on the Ultrasound Beam Profile of Transcranial Focused Ultrasound Stimulation. Tsai PC; Gougheri HS; Kiani M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5188-5191. PubMed ID: 31947027 [TBL] [Abstract][Full Text] [Related]
6. Towards High-Resolution Ultrasound Neuromodulation With Crossed-Beam Phased Arrays. Ilham SJ; Kiani M IEEE Trans Biomed Circuits Syst; 2023 Jun; 17(3):534-546. PubMed ID: 37310841 [TBL] [Abstract][Full Text] [Related]
7. tFUSFormer: Physics-Guided Super-Resolution Transformer for Simulation of Transcranial Focused Ultrasound Propagation in Brain Stimulation. Shin M; Seo M; Yoo SS; Yoon K IEEE J Biomed Health Inform; 2024 Jul; 28(7):4024-4035. PubMed ID: 38625763 [TBL] [Abstract][Full Text] [Related]
8. Three-layer model with absorption for conservative estimation of the maximum acoustic transmission coefficient through the human skull for transcranial ultrasound stimulation. Attali D; Tiennot T; Schafer M; Fouragnan E; Sallet J; Caskey CF; Chen R; Darmani G; Bubrick EJ; Butler C; Stagg CJ; Klein-Flügge M; Verhagen L; Yoo SS; Pauly KB; Aubry JF Brain Stimul; 2023; 16(1):48-55. PubMed ID: 36549480 [TBL] [Abstract][Full Text] [Related]
9. Characterization of ultrasound propagation through ex-vivo human temporal bone. Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study. Truong DQ; Thomas C; Hampstead BM; Datta A Neuromodulation; 2022 Jun; 25(4):606-613. PubMed ID: 35125300 [TBL] [Abstract][Full Text] [Related]
12. Global sonication of the human intracranial space via a jumbo planar transducer. Brinker ST; Yoon K; Benveniste H Ultrasonics; 2023 Sep; 134():107062. PubMed ID: 37343366 [TBL] [Abstract][Full Text] [Related]
13. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. Mueller JK; Ai L; Bansal P; Legon W J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075 [TBL] [Abstract][Full Text] [Related]
14. Effects of nonlinear ultrasound propagation on high intensity brain therapy. Pinton G; Aubry JF; Fink M; Tanter M Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833 [TBL] [Abstract][Full Text] [Related]
15. A Spatial Multitarget Ultrasound Neuromodulation System Using High-Powered 2-D Array Transducer. Zhuang X; He J; Wu J; Ji X; Chen Y; Yuan M; Zeng L IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Mar; 69(3):998-1007. PubMed ID: 34990356 [TBL] [Abstract][Full Text] [Related]
16. Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation. Shin M; Peng Z; Kim HJ; Yoo SS; Yoon K Comput Methods Programs Biomed; 2023 Jul; 237():107591. PubMed ID: 37182263 [TBL] [Abstract][Full Text] [Related]
17. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy. Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605 [TBL] [Abstract][Full Text] [Related]
18. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation. Samoudi MA; Van Renterghem T; Botteldooren D J Neural Eng; 2019 Apr; 16(2):026015. PubMed ID: 30572313 [TBL] [Abstract][Full Text] [Related]
19. Application of subject-specific helmets for the study of human visuomotor behavior using transcranial focused ultrasound: a pilot study. Park TY; Jeong JH; Chung YA; Yeo SH; Kim H Comput Methods Programs Biomed; 2022 Nov; 226():107127. PubMed ID: 36126434 [TBL] [Abstract][Full Text] [Related]
20. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull. Pichardo S; Moreno-Hernández C; Andrew Drainville R; Sin V; Curiel L; Hynynen K Phys Med Biol; 2017 Aug; 62(17):6938-6962. PubMed ID: 28783716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]