BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36342434)

  • 1. The stiffness-dependent tumor cell internalization of liquid metal nanoparticles.
    He J; Pang W; Gu B; Lin X; Ye J
    Nanoscale; 2022 Nov; 14(45):16902-16917. PubMed ID: 36342434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serum protein adsorption and excretion pathways of metal nanoparticles.
    Vinluan RD; Zheng J
    Nanomedicine (Lond); 2015; 10(17):2781-94. PubMed ID: 26377047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular uptake, transport, and processing of gold nanostructures.
    Chithrani DB
    Mol Membr Biol; 2010 Oct; 27(7):299-311. PubMed ID: 20929337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries.
    Bai X; Wang S; Yan X; Zhou H; Zhan J; Liu S; Sharma VK; Jiang G; Zhu H; Yan B
    ACS Nano; 2020 Jan; 14(1):289-302. PubMed ID: 31869202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise manipulation of biophysical particle parameters enables control of proinflammatory cytokine production in presence of TLR 3 and 4 ligands.
    Kakizawa Y; Lee JS; Bell B; Fahmy TM
    Acta Biomater; 2017 Jul; 57():136-145. PubMed ID: 28069499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silica-coated liquid metal nanoparticles with different stiffness for cellular uptake-enhanced tumor photothermal therapy.
    Wang S; Lv Y
    Biomater Adv; 2024 Jul; 161():213872. PubMed ID: 38733802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring Renal Clearance and Tumor Targeting of Ultrasmall Metal Nanoparticles with Particle Density.
    Tang S; Peng C; Xu J; Du B; Wang Q; Vinluan RD; Yu M; Kim MJ; Zheng J
    Angew Chem Int Ed Engl; 2016 Dec; 55(52):16039-16043. PubMed ID: 27882633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted delivery and enhanced uptake of chemo-photodynamic nanomedicine for melanoma treatment.
    Huang X; Mu N; Ding Y; Lam HW; Yue L; Gao C; Chen T; Yuan Z; Wang R
    Acta Biomater; 2022 Jul; 147():356-365. PubMed ID: 35577046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.
    Sims LB; Curtis LT; Frieboes HB; Steinbach-Rankins JM
    J Nanobiotechnology; 2016 Apr; 14():33. PubMed ID: 27102372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-lipid and ligand-core affinity control the interaction of gold nanoparticles with artificial lipid bilayers and cell membranes.
    Broda J; Setzler J; Leifert A; Steitz J; Benz R; Simon U; Wenzel W
    Nanomedicine; 2016 Jul; 12(5):1409-19. PubMed ID: 26773462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacokinetics and tumor delivery of nanoparticles.
    Yuan L; Chen Q; Riviere JE; Lin Z
    J Drug Deliv Sci Technol; 2023 May; 83():. PubMed ID: 38037664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the Importance of Ligand Mobility on Cellular Uptake of Nanoparticles: Insights from Experimental, Computational, and Theoretical Investigations.
    Chen YQ; Xue MD; Li JL; Huo D; Ding HM; Ma Y
    ACS Nano; 2024 Feb; 18(8):6463-6476. PubMed ID: 38346263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.
    Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sputtering-Enabled Intracellular X-ray Photoelectron Spectroscopy: A Versatile Method To Analyze the Biological Fate of Metal Nanoparticles.
    Turco A; Moglianetti M; Corvaglia S; Rella S; Catelani T; Marotta R; Malitesta C; Pompa PP
    ACS Nano; 2018 Aug; 12(8):7731-7740. PubMed ID: 30004662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical Considerations in the Rational Design and Cellular Targeting of Flexible Polymeric Nanoparticles.
    Farokhirad S; Kandy SK; Tsourkas A; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    Adv Mater Interfaces; 2021 Dec; 8(23):. PubMed ID: 35782961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating Phagocytic Cell Sequestration by Tailoring Nanoconstruct Softness.
    Palomba R; Palange AL; Rizzuti IF; Ferreira M; Cervadoro A; Barbato MG; Canale C; Decuzzi P
    ACS Nano; 2018 Feb; 12(2):1433-1444. PubMed ID: 29314819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.