These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36342434)

  • 21. Interactions of gold and silica nanoparticles with plasma membranes get distinguished by the van der Waals forces: Implications for drug delivery, imaging, and theranostics.
    Jing H; Sinha S; Sachar HS; Das S
    Colloids Surf B Biointerfaces; 2019 May; 177():433-439. PubMed ID: 30798064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Surface Modification with Hydrocarbyl Groups on the Exocytosis of Nanoparticles.
    Ho LWC; Yin B; Dai G; Choi CHJ
    Biochemistry; 2021 Apr; 60(13):1019-1030. PubMed ID: 33169977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of substrate topography on the cellular uptake of nanoparticles.
    Huang C; Ozdemir T; Xu LC; Butler PJ; Siedlecki CA; Brown JL; Zhang S
    J Biomed Mater Res B Appl Biomater; 2016 Apr; 104(3):488-95. PubMed ID: 25939598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different cell responses induced by exposure to maghemite nanoparticles.
    Luengo Y; Nardecchia S; Morales MP; Serrano MC
    Nanoscale; 2013 Dec; 5(23):11428-37. PubMed ID: 23963338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization.
    Karaman DS; Desai D; Senthilkumar R; Johansson EM; Råtts N; Odén M; Eriksson JE; Sahlgren C; Toivola DM; Rosenholm JM
    Nanoscale Res Lett; 2012 Jul; 7(1):358. PubMed ID: 22747910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adenovirus-Mimetic Nanoparticles: Sequential Ligand-Receptor Interplay as a Universal Tool for Enhanced
    Fleischmann D; Maslanka Figueroa S; Beck S; Abstiens K; Witzgall R; Schweda F; Tauber P; Goepferich A
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34689-34702. PubMed ID: 32639709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures.
    Murugan K; Choonara YE; Kumar P; Bijukumar D; du Toit LC; Pillay V
    Int J Nanomedicine; 2015; 10():2191-206. PubMed ID: 25834433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gold nanoparticles-biomembrane interactions: From fundamental to simulation.
    Okoampah E; Mao Y; Yang S; Sun S; Zhou C
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111312. PubMed ID: 32841786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy.
    Valencia PM; Pridgen EM; Rhee M; Langer R; Farokhzad OC; Karnik R
    ACS Nano; 2013 Dec; 7(12):10671-80. PubMed ID: 24215426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Toxicity of Polystyrene-Based Nanoparticles in
    Ozbek O; O Ulgen K; Ileri Ercan N
    Chem Res Toxicol; 2021 Apr; 34(4):1055-1068. PubMed ID: 33710856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular insights into the uptake of SiO
    Yuan S; Zhang H; Wang X; Zhang H; Zhang Z; Yuan S
    Colloids Surf B Biointerfaces; 2022 Feb; 210():112250. PubMed ID: 34861541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation.
    Hou Y; Lu C; Dou M; Zhang C; Chang H; Liu J; Rao W
    Acta Biomater; 2020 Jan; 102():403-415. PubMed ID: 31734413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How and why nanoparticle's curvature regulates the apparent pKa of the coating ligands.
    Wang D; Nap RJ; Lagzi I; Kowalczyk B; Han S; Grzybowski BA; Szleifer I
    J Am Chem Soc; 2011 Feb; 133(7):2192-7. PubMed ID: 21280574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.
    Safavi-Sohi R; Maghari S; Raoufi M; Jalali SA; Hajipour MJ; Ghassempour A; Mahmoudi M
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22808-18. PubMed ID: 27526263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticle hardness controls the internalization pathway for drug delivery.
    Li Y; Zhang X; Cao D
    Nanoscale; 2015 Feb; 7(6):2758-69. PubMed ID: 25585060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?
    Park S; Woodhall J; Ma G; Veinot JG; Boxall AB
    Environ Toxicol Chem; 2015 Apr; 34(4):850-9. PubMed ID: 25556899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transformable Gallium-Based Liquid Metal Nanoparticles for Tumor Radiotherapy Sensitization.
    Liu R; Gong L; Zhu X; Zhu S; Wu X; Xue T; Yan L; Du J; Gu Z
    Adv Healthc Mater; 2022 Jun; 11(11):e2102584. PubMed ID: 35114075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.