BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36342572)

  • 1. Fire regime of peatlands in the Angolan Highlands.
    Lourenco M; Woodborne S; Fitchett JM
    Environ Monit Assess; 2022 Nov; 195(1):78. PubMed ID: 36342572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angolan highlands peatlands: Extent, age and growth dynamics.
    Lourenco M; Fitchett JM; Woodborne S
    Sci Total Environ; 2022 Mar; 810():152315. PubMed ID: 34914988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires.
    Miettinen J; Shi C; Liew SC
    Environ Manage; 2017 Oct; 60(4):747-757. PubMed ID: 28674917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape fires disproportionally affect high conservation value temperate peatlands, meadows, and deciduous forests, but only under low moisture conditions.
    Kirkland M; Atkinson PW; Pearce-Higgins JW; de Jong MC; Dowling TPF; Grummo D; Critchley M; Ashton-Butt A
    Sci Total Environ; 2023 Aug; 884():163849. PubMed ID: 37137369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vegetation management with fire modifies peatland soil thermal regime.
    Brown LE; Palmer SM; Johnston K; Holden J
    J Environ Manage; 2015 May; 154():166-76. PubMed ID: 25728915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shortening fire return interval predisposes west-central Canadian boreal peatlands to more rapid vegetation growth and transition to forest cover.
    Jones EA; Chasmer LE; Devito KJ; Hopkinson CD
    Glob Chang Biol; 2024 Feb; 30(2):e17185. PubMed ID: 38361266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania.
    Tarimo B; Dick ØB; Gobakken T; Totland Ø
    Carbon Balance Manag; 2015 Dec; 10():18. PubMed ID: 26246851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition.
    Flanagan NE; Wang H; Winton S; Richardson CJ
    Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oil palm 'slash-and-burn' practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland.
    Dhandapani S; Evers S
    Sci Total Environ; 2020 Nov; 742():140648. PubMed ID: 32721749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable carbon losses from recurrent fires in drained tropical peatlands.
    Konecny K; Ballhorn U; Navratil P; Jubanski J; Page SE; Tansey K; Hooijer A; Vernimmen R; Siegert F
    Glob Chang Biol; 2016 Apr; 22(4):1469-80. PubMed ID: 26661597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Madagascar's fire regimes challenge global assumptions about landscape degradation.
    Phelps LN; Andela N; Gravey M; Davis DS; Kull CA; Douglass K; Lehmann CER
    Glob Chang Biol; 2022 Dec; 28(23):6944-6960. PubMed ID: 35582991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon emissions from the peat fire problem-a review.
    Che Azmi NA; Mohd Apandi N; A Rashid AS
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):16948-16961. PubMed ID: 33641100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland.
    Sinclair AL; Graham LLB; Putra EI; Saharjo BH; Applegate G; Grover SP; Cochrane MA
    Sci Total Environ; 2020 Jan; 699():134199. PubMed ID: 31522054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate and socioeconomic drivers of biomass burning and carbon emissions from fires in tropical dry forests: A Pantropical analysis.
    Corona-Núñez RO; Campo JE
    Glob Chang Biol; 2023 Feb; 29(4):1062-1079. PubMed ID: 36345650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land cover change interacts with drought severity to change fire regimes in Western Amazonia.
    Gutiérrez-Vélez VH; Uriarte M; DeFries R; Pinedo-Vásquez M; Fernandes K; Ceccato P; Baethgen W; Padoch C
    Ecol Appl; 2014; 24(6):1323-40. PubMed ID: 29160657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of change in the peat soil properties affected by different fire severities.
    Fulazzaky MA; Ismail I; Harlen H; Sukendi S; Roestamy M; Siregar YI
    Environ Monit Assess; 2022 Sep; 194(10):783. PubMed ID: 36098855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fires dynamics in the Pantanal: Impacts of anthropogenic activities and climate change.
    Marques JF; Alves MB; Silveira CF; Amaral E Silva A; Silva TA; Dos Santos VJ; Calijuri ML
    J Environ Manage; 2021 Dec; 299():113586. PubMed ID: 34454200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate-induced Arctic-boreal peatland fire and carbon loss in the 21st century.
    Lin S; Liu Y; Huang X
    Sci Total Environ; 2021 Nov; 796():148924. PubMed ID: 34265612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental drying intensifies burning and carbon losses in a northern peatland.
    Turetsky MR; Donahue WF; Benscoter BW
    Nat Commun; 2011 Nov; 2():514. PubMed ID: 22044993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.