BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36342607)

  • 1. Precise application of grouting technology in underground coal mining: water inrush risk of floor elimination.
    Zhai M; Bai H
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24361-24376. PubMed ID: 36342607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Criterion of Grouting Pressure in Regional Advance Grouting Treatment to Prevent Water Disaster from Karst Aquifers in Coal Seam Floors.
    Zhang W; Wu F; Han C; Li X; Peng Z; Ren Q; Yang F; Zhang D
    ACS Omega; 2022 Aug; 7(33):29274-29286. PubMed ID: 36033679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar.
    Ma D; Wang J; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on key grouting blocking parameters of gas drainage boreholes in soft coal seams.
    Bao R; Zhou F; Shang H; Song S
    Heliyon; 2024 Mar; 10(6):e28303. PubMed ID: 38560694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Reasonable Grouting Pressure in the Process of Measuring Coal Seam Gas Pressure and Application.
    Yang F; Chen X; Zhang J; Ma J
    ACS Omega; 2023 Jul; 8(29):25892-25902. PubMed ID: 37521619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of mixing water source and response mechanism of radium and radon under mining in limestone of coal seam floor.
    Huang P; Gao H; Su Q; Zhang Y; Cui M; Chai S; Li Y; Jin Y
    Sci Total Environ; 2023 Jan; 857(Pt 3):159666. PubMed ID: 36302409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical simulation study on grouting water plugging of flexible isolation layer in coal seam mining.
    Li A; Ji B; Ma Q; Ji Y; Mu Q; Zhang W; Mu P; Li L; Zhao C
    Sci Rep; 2022 Jan; 12(1):875. PubMed ID: 35042919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technology and engineering test of filling goaf with coal gangue slurry.
    Xie S; Pan H; Gu W; Zhu L; Yue D; Chen D; Song T; Jiang Z
    Sci Rep; 2023 Nov; 13(1):20536. PubMed ID: 37996503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of deep coal mining on groundwater hydrodynamic and hydrochemical processes in a multi-aquifer system: Insights from a long-term study of mining areas in ecologically fragile western China.
    Zhan H; Liu S; Wu Q; Liu W; Shi L; Liu D
    J Contam Hydrol; 2024 Jun; 265():104386. PubMed ID: 38908281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogeochemistry of Water in Coal Measures during Grouting Treatment of Taoyuan Mine, China.
    Guo Y; Gui H; Wei J; Zhang Z; Hu M; Fang P; Li G; Gao C; Wang X
    Ground Water; 2021 Mar; 59(2):256-265. PubMed ID: 32779185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration mechanism of grouting slurry and permeability reduction in mining fractured rock mass.
    Zhengzheng C; Pengshuai W; Zhenhua L; Feng D
    Sci Rep; 2024 Feb; 14(1):3446. PubMed ID: 38341507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-inrush mechanism from the head-on working face roof in a Jurassic coal seam in the Ordos Basin.
    Shi L; Qu X; Qiu M; Han J; Zhang W
    PLoS One; 2024; 19(3):e0298399. PubMed ID: 38470875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive study on identification of water inrush sources from deep mining roadway.
    Chen Y; Tang L; Zhu S
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19608-19623. PubMed ID: 34718973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term groundwater geochemical evolution induced by coal mining activities-a case study of floor confined limestone aquifer in Yaoqiao Coal Mine, Jiangsu, China.
    Chen G; Sun Y; Xu Z; Yuan H; Yi H
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96252-96271. PubMed ID: 37566333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventing water-inrush from floor in coal working face with paste-like backfill technology.
    Qu X; Shi L; Han J
    Sci Rep; 2023 Sep; 13(1):15947. PubMed ID: 37743362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coal Wall Spalling Mechanism and Grouting Reinforcement Technology of Large Mining Height Working Face.
    Liu H; Chen Y; Han Z; Liu Q; Luo Z; Cheng W; Zhang H; Qiu S; Wang H
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing.
    Yu R; Qian J; Liu L; Zha H; Li N
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of fly-ash slurry in backfill grouting in coal mines.
    Jiang N; Zhao J; Sun X; Bai L; Wang C
    Heliyon; 2017 Nov; 3(11):e00470. PubMed ID: 29264423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grouting slurry diffusion range based on active heating fiber optics monitoring.
    Zhu L; Gu W; Qiu F; Ouyang Y
    Sci Rep; 2022 Nov; 12(1):19162. PubMed ID: 36357412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.